I think the system of inequalities could be the following, but I'm not positive:
l=Length, w=Width
l < 12
w x l < 30
It has not been indicated whether the figure in the questions is a triangle or a quadrilateral. Irrespective of the shape, this can be solved. The two possible shapes and angles have been indicated in the attached image.
Now, from the information given we can infer that there is a line BD that cuts angle ABC in two parts: angle ABD and angle DBC
⇒ Angle ABC = Angle ABD + Angle DBC
Also, we know that angle ABC is 1 degree less than 3 times the angle ABD, and that angle DBC is 47 degree
Let angle ABD be x
⇒ Angle ABC = 3x-1
Also, Angle ABC = Angle ABD + Angle DBC
Substituting the values in the above equations
⇒ 3x-1 = x+47
⇒ 2x = 48
⇒ x = 24
So angle ABD = 24 degree, and angle ABC = 3(24)-1 = 71-1 = 71 degree
Answer: The answer is 
Step-by-step explanation: Given that the area of the whole circle is represented by the expression

We are to find the area of the outer ring of the circle, i.e., to find the circumference of the circle.
Now, if 'r' represents the radius of the circle, then we have

Thus, the area of the outer ring is

To expand (3 - 2x)^6 use the binomial theorem:
(x + y)^ n = C(n,0) x^ny^0 + C(n,1)x^(n-1) y + C(n,2)x^(n-2) y^2 + ...+ C(n,n+1)xy^(n-1) + C(n,n)x^0y^n
So, for x = 3, y = -2x , and n = 6 you get:
(3 - 2x) ^6 = C(6,0)(3)^6 + C(6,1)(3)^5 (-2x) + C(6,2) (3)^4 (-2x)^3 + C(6,3) (3^3) (-2x)^4 + C(6,4)(3)^2 (-2x)^4 + C(6,5) (3) (-2x)^5 + C(6,6) (-2x)^6
So, the sixth term is C(6,5)(3)(-2x)^5 = 6! / [5! (6-5)! ] * 3 * (-2)^5 x^5 = - 6*3*32 = - 576 x^5.
The coefficient of that term is - 576.
Answer: - 576