Answer:
a) There is a 0.15% probability that exactly five of the selected adults believe in reincarnation.
b) 0.0064% probability that all of the selected adults believe in reincarnation.
c) There is a 0.1564% probability that at least five of the selected adults believe in reincarnation.
d) Since
, 5 is a significantly high number of adults who believe in reincarnation in this sample.
Step-by-step explanation:
For each of the adults selected, there are only two possible outcomes. Either they believe in reincarnation, or they do not. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
In this problem we have that:

a. What is the probability that exactly five of the selected adults believe in reincarnation?
This is P(X = 5).


There is a 0.15% probability that exactly five of the selected adults believe in reincarnation.
b. What is the probability that all of the selected adults believe in reincarnation?
This is P(X = 6).


There is a 0.0064% probability that all of the selected adults believe in reincarnation.
c. What is the probability that at least five of the selected adults believe in reincarnation?
This is

There is a 0.1564% probability that at least five of the selected adults believe in reincarnation.
d. If six adults are randomly selected, is five a significantly high number who believe in reincarnation?
5 is significantly high if 
We have that

Since
, 5 is a significantly high number of adults who believe in reincarnation in this sample.