Answer:

Step-by-step explanation:
The volume V of the fountain is equal to:
V = L*W*h
Where L is the lenght of the fountain, W is the width of the fountain and h is the high of the fountain
We already know that h is equal to x. On the other hand, if we cut a square with side of length x, L and W are calculated as:
L = 18 - 2x
W = 12 - 2x
So, replacing L, W and h on the equation of the volume, we get:
V = (18-2x)*(12-2x)*x
Finally, simplifying the function we get:


Answer:
Here we have given two catogaries as degree holder and non degree holder.
So here we have to test the hypothesis that,
H0 : p1 = p2 Vs H1 : p1 not= p2
where p1 is population proportion of degree holder.
p2 is population proportion of non degree holder.
Assume alpha = level of significance = 5% = 0.05
The test is two tailed.
Here test statistic follows standard normal distribution.
The test statistic is,
Z = (p1^ - p2^) / SE
where SE = sqrt[(p^*q^)/n1 + (p^*q^)/n2]
p1^ = x1/n1
p2^ = x2/n2
p^ = (x1+x2) / (n1+n2)
This we can done in TI_83 calculator.
steps :
STAT --> TESTS --> 6:2-PropZTest --> ENTER --> Input all the values --> select alternative "not= P2" --> ENTER --> Calculate --> ENTER
Test statistic Z = 1.60
P-value = 0.1090
P-value > alpha
Fail to reject H0 or accept H0 at 5% level of significance.
Conclusion : There is not sufficient evidence to say that the percent of correct answers is significantly different between degree holders and non-degree holders.
68 is the correct answer. Thank you for your help! Love doing this!
Answer:
After 5 minutes, the BAC was increasing at the rate of 0.0137 mg/mL a minute.
Step-by-step explanation:
The average blood alcohol concentration (bac) is modeled by the following function.

In which t is measured in minuted.
How rapidly was the BAC increasing after 5 minutes?
This is c'(t) when t = 5.
Using the derivative of the product.
Derivative of the product:


In which problem:


So


After 5 minutes, the BAC was increasing at the rate of 0.0137 mg/mL a minute.
Answer:
0.96%
Step-by-step explanation:
look on google and search dollar times it helps with problems like this
hope this helps