answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brrunno [24]
2 years ago
7

An object with charge q = −6.00×10−9 C is placed in a region of uniform electric field and is released from rest at point A. Aft

er the charge has moved to point B, 0.500 m to the right, it has kinetic energy5.00×10−7 J .A. If the electric potential at point A is +30.0 V, what is the electric potential at point B?B. What is the magnitude of the electric field?C. What is the direction of the electric field?a. from point B to point Ab. from point A to point B c. perpendicular to the line AB
Physics
1 answer:
sergeinik [125]2 years ago
5 0

Answer:

a) 80 V

b) The magnitude of the electric field is 100 N/C and the direction of the electric field is from point B to point A where the electric field is toward the negative charge

Explanation:

<u>Given :</u>

We are given an object with charge q = -6.00 x I0^-9 C starts moving from the rest at point A, which means its kinetic energy at point A is zero ( K_{A}= 0) to the point B at distance l = 0.500m where its kinetic energy is (  K_{B}= 5.00 x 10^-7J) . Also, the electric potential of q at point A is VA = + 30.0 v.

<u>Required :</u>

<em>(a) We are asked to find the electric potential VB </em>

<em>(b) We want to determine the magnitude and the direction of the electric field E. </em>

<u> Solution </u>

(a) We are given the values for VA,K_{B} and q so we want to find a relationship between these three parameters and VB to get the value of VB.

As we have two states, at points A and B , where the charge moved from A to B due to the applied electric field. The mechanical energy of the object is conservative during this travel, and we can apply eq(1) in this situation:

                                   K_{A} +U_{A} =K_{B} +U_{B} .........................................(1)                                          

Where K_{A}= 0 and the potential energy U of the charge is given by U = q V

where V is the electric potential.  So, equation (1) will be in the form :

                                  0+qVA=K_{B} +qVB                      (Divide by q)

                                         VA=K_{B} /q + VB                  (solve for VB)

                                         VB=VA- K_{B}/q .......................................(2)

We get the relation between VB, VA and K_{B}, now we can plug our values for VA, K_{B} and q into equation (2) to get VB

                                         VB=VA- K_{B}/q

                                              =30V-(5.00 x 10^-7J)/(-6.00 x I0^-9)

                                              =80 V

(b) After we calculated VB we can use equation a to get the electric field E that applied to the charge q, where the potential difference between the two points equals the integration of the electric field multiplied by the distance l between the two points

                                   VA-VB =\int\limits^1_0 {E} \, dl...................................(a)

                                               =E\int\limits^1_0 {} \, dl

                                   VA-VB=El                      (solve for E)

                                            E= VA-VB/l..................................(3)

Now let us plug our values for VA, Vs and l into equation (3) to get the electric field E

                                            E= VA-VB/l

                                              =-100 N/C

The magnitude of the electric field is 100 N/C and the direction of the electric field is from point B to point A where the electric field is toward the negative charge

You might be interested in
A typical adult human has a mass of about 70 kg.
Misha Larkins [42]
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
a. <span>FM GmMmr2
</span>= 6.67 x 10-11N.m2kg27 .35 x 1022 kg 70 kg 3.78 x 108 m2 
<span>= 2.40 x 10-3 N

b. </span><span>FE GmEmr2
= 6.67 x 10-11 N.m2kg 25 .97 x 1034 kg (70kg) 6.38 x 106 m2
=685 N 
FMFE 2.40 x 10-3N685 N= 0.0004%</span>
3 0
2 years ago
A galloping pony speeds past you at 5 m/s. The frequency of the sound produced by the hooves on the dirt is 221 Hz. Assume the s
joja [24]
Given:
speed of passing pony 5 m/s
frequency of the sound produced: 221 Hz
speed of sound 342 m/s

Let us use the Doppler Shift Formula:
Where the <span>source is moving away from the observer at rest
</span>
f' = (v / v+vs) f
Where, vs<span> = Velocity of the Source,</span>
           v = Velocity of sound or light in medium,
           f = Real frequency,
           f' = Apparent frequency.

f'= [342 m/s / (342 m/s+5m/s)] * 221 Hz
f' = 0.9856 * 221Hz
f' = 217.8176 Hz or 218 Hz

The observed frequency <span>of the hooves after the pony has passed your position is 218 Hz.</span>
7 0
2 years ago
Read 2 more answers
A 600-turn solenoid, 25 cm long, has a diameter of 2.5 cm. A 14-turn coil is wound tightly around the center of the solenoid. If
Delvig [45]

Answer:

The induced emf in the short coil during this time is 1.728 x 10⁻⁴ V

Explanation:

The magnetic field at the center of the solenoid is given by;

B = μ(N/L)I

Where;

μ is permeability of free space

N is the number of turn

L is the length of the solenoid

I is the current in the solenoid

The rate of change of the field is given by;

\frac{\delta B}{\delta t} = \frac{\mu N \frac{\delta i}{\delta t} }{L} \\\\\frac{\delta B}{\delta t} = \frac{4\pi *10^{-7} *600* \frac{5}{0.6} }{0.25}\\\\\frac{\delta B}{\delta t} =0.02514 \ T/s

The induced emf in the shorter coil is calculated as;

E = NA\frac{\delta B}{\delta t}

where;

N is the number of turns in the shorter coil

A is the area of the shorter coil

Area of the shorter coil = πr²

The radius of the coil = 2.5cm / 2 = 1.25 cm = 0.0125 m

Area of the shorter coil = πr² = π(0.0125)² = 0.000491 m²

E = NA\frac{\delta B}{\delta t}

E = 14 x 0.000491 x 0.02514

E = 1.728 x 10⁻⁴ V

Therefore, the induced emf in the short coil during this time is 1.728 x 10⁻⁴ V

8 0
2 years ago
Songbirds often eat berries. Berry seeds are activated by the acids located in a bird's stomach. Once the bird's body eliminates
LenKa [72]
I don't think its a niche or community.My best guess is probably the habitat.
Hope that helps :)
6 0
2 years ago
Read 2 more answers
What is the average force (average with respect to height of the barbell from the ground) exerted by the weightlifter in the pro
Novay_Z [31]

This question is incomplete, the complete question is;

A weightlifter holds a 1,300 N barbell 1 meter above the ground. One end of a 2-meter-long chain hangs from the center of the barbell. The chain has a total weight of 400 N. How much work (in J) is required to lift the barbell to a height of 2 m?

What is the average force (average with respect to height of the barbell from the ground) exerted by the weightlifter in the process?

Answer: Average force exerted by the weightlifter in the process = 1600N

Explanation:

To find Work done to lift a barbell and half of the hanging chain we say;

W₁ = ( 1300N + (1/2 × 400N)) × 1m

W₁ = (1300 + 200) Nm

W₁ = 1500J

now work done to lift the upper half of the chain we say:

W₂ = (1/2 × 400N) ×  (1/2 × 1m)

W₂ = 200N × 0.5m

W₂ = 100J

So total work done will be

W = W₁ + W₂

W = 1500J + 100J

W = 1600J

To find the average force exerted by the weight lifter, we say;

F = W/D

F = (1600 / 1m) N

F = 1600N

∴Average force = 1600N

6 0
2 years ago
Other questions:
  • A swimmer does 3,560 J of work in 55 s. What is the swimmer’s power output? Round your answer to two significant figures. The po
    15·2 answers
  • The gravitational force between two asteroids is 6.2 × 108 n. asteroid y has three times the mass of asteroid z. if the distance
    6·2 answers
  • A star is moving toward the earth with a speed of 0.9 c (90% the speed of light). it emits light, which moves away from the star
    12·1 answer
  • Keisha finds instructions for a demonstration on gas laws. 1. Place a small marshmallow in a large plastic syringe. 2. Cap the s
    15·2 answers
  • One end of a piano wire is wrapped around a cylindrical tuning peg and the other end is fixed in place. The tuning peg is turned
    11·1 answer
  • A ball weighing 1 lb is attached to a string 2 feet long and is whirled in a vertical circle at a constant speed of 10 ft/sec.
    14·1 answer
  • Krista is playing tennis at the park. When the tennis ball flies toward her, Krista hits the ball with her racket, which causes
    8·1 answer
  • Suppose a ray of light traveling in a material with an index of refraction n a reaches an interface with a material having an in
    12·1 answer
  • Psi communication refers to the transfer of information through a/an ________ process.
    10·1 answer
  • Fiber optic (FO) cables are based upon the concept of total internal reflection (TIR), which is achieved when the FO core and cl
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!