The acceleration produced in a body is always in the direction of the resultant force acting on the body. Therefore, we may determine the horizontal acceleration using the horizontal force applied. To do this, we may apply the mathematical form of Newton's second law:
Force = mass * acceleration
acceleration = force / mass
Substituting the values,
a = 100 / 0.15
a = 666.7 m/s²
The acceleration of the hockey puck is 670 m/s²
A perfect elastic collision is defined as one in which there is no loss of kinetic energy in the collision. An inelastic collision is one in which part of the kinetic energy is changed into another form of energy in the collision. Well hope this answers your question :)
Answer:
The airspeed must be 7.78 m/s for the rectangular plate kept at 30°.
Explanation:
By looking at the images below wee see that the airspeed on one side of the rectangular plate decreases the statical pressure over this side. Since over the downside, the pressure still bein the atmospheric pressure. This difference in pressure produces a lift force in the plate. The list force is the net force obtained between the difference of the forces that produce the pressure over the upside and the downside:

Where up and down relate to what movement the forces produce. And p and V are the respective air density and velocity.
When the plate is kept horizontal the lift force balance the moment due to the weight of the plate and considering that both forces act at the same point:

By replacing the known values it is possible to find the plate's weight:


When the plate kept to 30° from the vertical the moment equation balance is written as:

The sine of 30° is due to the weight is 30° oriented, therefore the new value for the airspeed is:






Answer:
The acceleration of the cart is 1.0 m\s^2 in the negative direction.
Explanation:
Using the equation of motion:
Vf^2 = Vi^2 + 2*a*x
2*a*x = Vf^2 - Vi^2
a = (Vf^2 - Vi^2)/ 2*x
Where Vf is the final velocity of the cart, Vi is the initial velocity of the cart, a the acceleration of the cart and x the displacement of the cart.
Let x = Xf -Xi
Where Xf is the final position of the cart and Xi the initial position of the cart.
x = 12.5 - 0
x = 12.5
The cart comes to a stop before changing direction
Vf = 0 m/s
a = (0^2 - 5^2)/ 2*12.5
a = - 1 m/s^2
The cart is decelerating
Therefore the acceleration of the cart is 1.0 m\s^2 in the negative direction.
On comparing values , we see that student which has the largest percent error is <u>A. Student 4: 9.61 m/s2
.</u>
<u>Explanation:</u>
Here, we have Four students measured the acceleration of gravity. The accepted value for their location is 9.78m/s2. Let's calculate which student’s measurement has the largest percent error :
<u>A. Student 4: 9.61 m/s2
</u>
Percentage of error =
%.
<u>B. Student 3: 9.88 m/s2
</u>
Percentage of error =
%.
<u>C. Student 2: 9.79 m/s2
</u>
Percentage of error =
% .
<u>D. Student 1: 9.78 m/s2</u>
Percentage of error =
% .
On comparing values , we see that student which has the largest percent error is <u>A. Student 4: 9.61 m/s2
.</u>