Answer:
The kinetic energy dissipated is 3286.5 J
Explanation:
K.E before collision = 1/2m1v1^2 = 1/2×313×6^2 = 5634 J
K.E after collision = 1/2(m1+m2)v2^2
From the law of conservation of momentum:
m1+m2 = m1v1/v2 = 313×6/2.5 = 751.2 kg
K.E after collision = 1/2×751.2×2.5^2 = 2347.5 J
K.E dissipated = 5634 J - 2347.5 J = 3286.5 J
Answer:
V=20cm/s
Explanation:
The average speed is the distance total divided the time total:

First stage:
T1=5s

But,
(decelerates to rest)
then: 
on the other hand:

X1=75cm
Second stage:
T2=5s

X2=125cm
Finally:
X=X1+X2=200cm
T=T1+T2=10s
V=X/T=20cm/s
A photoelectric cell is an electronic device which is used to convert light energy into electric energy.The operation of this device is based on photoelectric effect.
Light of suitable frequency i.e greater or equal to threshold frequency will fall on the cathode maintained at negative potential.The electron emission will take place and these electrons are drifted towards the anode which is at positive potential.
Here,only those radiations will be capable of emitting electrons irrespective of surface barrier of metals whose energy is greater than the work function.
We know that the radiation having long wavelength has least energy as energy and wavelength are inversely proportional to each other.

Here h is the Planck's constant,c is the velocity of light.
Here we have been given red light and blue light.
In the visible spectrum of radiation, the red light has longer wavelength than all other colors of light.Hence blue light has more energy as it's wavelength is less as compared to red light.
Hence, the blue light will activate the most and red the least.
For Newton's second law, the resultant of the forces acting on the book is equal to the product between the mass of the book and its acceleration:

(1)
There are only two forces acting on the book:
- its weight, directed downward: mg
- the force exerted by the hand on the book, of 20 N, directed upward
so, equation (1) becomes

from which we can calculate the book's acceleration, a:
If the mass of the cylinder increases, the temperature of the water increases, because a greater mass means the cylinder has more potential energy that can be converted to thermal energy, increasing the temperature of the water.