Answer:
90.9 seconds
Explanation:
m = Mass of liquid = Volume×Density
c = Specific heat
= Change in temperature
t = Time taken
Room temperature = 75 °F
Converting to Celsius

Heat required to raise the temperature of water

Power

Efficiency of the plate

Heat required to raise the temperature of water


Time taken to heat the aceton is 90.9 seconds
Answer:
U = 1 / r²
Explanation:
In this exercise they do not ask for potential energy giving the expression of force, since these two quantities are related
F = - dU / dr
this derivative is a gradient, that is, a directional derivative, so we must have
dU = - F. dr
the esxresion for strength is
F = B / r³
let's replace
∫ dU = - ∫ B / r³ dr
in this case the force and the displacement are parallel, therefore the scalar product is reduced to the algebraic product
let's evaluate the integrals
U - Uo = -B (- / 2r² + 1 / 2r₀²)
To complete the calculation we must fix the energy at a point, in general the most common choice is to make the potential energy zero (Uo = 0) for when the distance is infinite (r = ∞)
U = B / 2r²
we substitute the value of B = 2
U = 1 / r²
Answer:
(1) An object that’s negatively charged has more electrons than protons.
(2) An object that’s positively charged has fewer electrons than protons.
(3) An object that’s not charged has the same number of electrons than protons.
Explanation :
Objects have three subatomic particles that are Electrons, protons, and neutrons.
Protons and neutrons are found in the nucleus and electrons rotate or move outside the nucleus. Naturally, protons are positively charged, neutrons have no charge, and electrons are negatively charged.
Therefore, an object that is negatively charged has more electrons than protons. An object that is not charged has the same number of electrons than protons. An object that is positively charged has fewer electrons than protons.
Answer:attract each other
Explanation:
When two-sphere, one with a negative charge and another neutral is brought close together but do not touch then they try to attract each other.
This because of the polarization of the neutral sphere as it is placed in the vicinity of a negatively charged sphere. The negatively charged sphere will induce the positive charge in the neutral sphere and they will attract each other according to Columb law.
The partial pressure of the O2 is 36.3 kiloPascal when the air pressure in the mask is 110 kiloPascal based on the isotherm relation. This problem can be solved by using the isotherm relation equation which stated as Vx/Vtot = px/ptot, where V represents volume, p represents the pressure, x represents the partial gas, and tot represents the total gas<span>. Calculation: 33/100 = px/110 --> px = 36.3</span>