Answer:
y = 2/3x
Step-by-step explanation:
The graph shows a rise of 1 for a run of 4, so its slope is ...
rise/run = 1/4
The equation with a greater rate of change is the one with an x-coefficient greater than 1/4. That one is ...
y = 2/3x
Answer:
Number 1
Step-by-step explanation:
Because she travels quicker and he line is 3/4
So, if Dylan has x dollars and he bought 3 tickets with them, the tickets were priced at k dollars per ticket. If he bought 5 tickets with the x dollars and saved 12 total dollars, it would be the same as buying the tickets with x-12 dollars, so we have:

So, with this we have:

If we're looking for a number that satisfies these constraints, we can work with modular arithmetic. We have:

So, we can use the chinese remainder theorem here. So, we clearly have x=3k, which means:

So, since we have x=3k, we also have x=3(5j+4)=15j+12.
So, clearly j=0 won't work so we should have j=1. That means our money per ticket for the five tickets is:

And our money per three tickets is:

This is easily verifiable. Three tickets needs 27 dollars and 5 tickets needs 15 dollars, which is 12 less than 27 dollars. So we have our money per three dollar ticket at 6 more than money per five dollar.
Answer:
Step-by-step explanation:
1) True. This is because the divergence of F is 1, thus, F is a linear function. Orientation is given outward to the surface. Linear function double integrated over a surface with outward orientation gives volume enclosed by the surface.
2) True. This is primarily what the Divergence theorem is.
3) False. If F was 3/pi instead of div(F), then the statement would have been true.
4) False. The gradient of divergence can be anything. The curl of divergence of a vector function is 0, not the gradient o divergence.
5) False. While finding Divergence, derivatives are taken for different variables. Since the derivatives of constants are 0, therefore, both the vector functions F and G can be different constant parts of there components even if their divergences are equal.