answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
geniusboy [140]
2 years ago
15

A small object with mass 0.200 kg swings back and forth on the lower end of a light rope that is 3.00 m long. The upper end of t

he rope is attached to the ceiling. As the object swings through its lowest position, where the rope is vertical, the speed of the object is 8.50 m/s. At this point in the motion, what is the tension in the rope?
Physics
1 answer:
Alex787 [66]2 years ago
5 0

Answer:

= 6.8 N

Explanation:

T = mg + ma

T = tension, N

m = mass, kg

g = gravitational force, 9.8 m/s2²

a = acceleration, m/s²

a =( 8.5²) / 3

a = 24.08

T = mg + ma

T = m (g + a)

T = 0.2 ( 9.8 + 24.08)

T = 0.2 ( 33.88)

T = 6.776N

≅ 6.8N

You might be interested in
A ball of mass m and radius R is both sliding and spinning on a horizontal surface so that its rotational kinetic energy equals
spin [16.1K]

Answer:

\frac{v_{cm}}{\omega} = 1.122\cdot R

Explanation:

According to the statement of the problems, the following identity exists:

K_{t} = K_{r}

\frac{1}{2}\cdot m \cdot v_{cm}^{2} = 0.63\cdot m \cdot R^{2} \cdot \omega^{2}

After some algebraic handling, the ratio is obtained:

\frac{v_{cm}^{2}}{\omega^{2}}=1.26\cdot R^{2}

\frac{v_{cm}}{\omega} = 1.122\cdot R

4 0
2 years ago
A soft drink (mostly water) flows in a pipe at a beverage plant with a mass flow rate that would fill 220 cans, 0.355 - l each,
Alona [7]
Flow rate = 220*0.355 l/m = 78.1 l/min = 1.3 l/s = 0.0013 m^3/s

Point 2:
A2= 8 cm^2 = 0.0008 m^2
V2 = Flow rate/A2 = 0.0013/0.0008 = 1.625 m/s
P1 = 152 kPa = 152000 Pa

Point 1:
A1 = 2 cm^2 = 0.0002 m^2
V1 = Flow rate/A1 = 0.0013/0.0002 = 6.5 m/s
P1 = ?
Height = 1.35 m

Applying Bernoulli principle;
P2+1/2*V2^2/density = P1+1/2*V1^2/density +density*gravitational acceleration*height
=>152000+0.5*1.625^2*1000=P1+0.5*6.5^2*1000+1000*9.81*1.35
=> 153320.31 = P1 + 34368.5
=> P1 = 1533210.31-34368.5 = 118951.81 Pa = 118.95 kPa
3 0
2 years ago
Read 2 more answers
Three couples and two single individuals have been invited to an investment seminar and have agreed to attend. Suppose the proba
lions [1.4K]

Answer:

a) Probability mass function of x

x P(X=x)

0 0.0602

1 0.0908

2 0.1700

3 0.2050

4 0.1800

5 0.1550

6 0.0843

7 0.0390

8 0.0147

b) Cumulative Distribution function of X

x F(x)

0 0.0602

1 0.1510

2 0.3210

3 0.5260

4 0.7060

5 0.8610

6 0.9453

7 0.9843

8 1.0000

The cumulative distribution function gives 1.0000 as it should.

Explanation:

Probability of arriving late = 0.43

Probability of coming late = 0.57

Let's start with the probability P(X=0) that exactly 0 people arrive late, the probability P(X=1) that exactly 1 person arrives late, the probability P(X=2) that exactly 2 people arrive late, and so on up to the probability P(X=8) that 8 people arrive late.

Interpretation(s) of P(X=0)

The two singles must arrive on time, and the three couples also must. It follows that P(X=0) = (0.57)⁵ = 0.0602

Interpretation(s) of P(X=1)

Exactly 1 person, a single, must arrive late, and all the rest must arrive on time. The late single can be chosen in 2 ways. The probabiliy that (s)he arrives late is 0.43.

The probability that the other single and the three couples arrive on time is (0.57)⁴

It follows that

P(X=1) = (2)(0.43)(0.57)⁴ = 0.0908

Interpretation(s) of P(X=2)

Two late can happen in two different ways. Either (i) the two singles are late, and the couples are on time or (ii) the singles are on time but one couple is late.

(i) The probability that the two singles are late, but the couples are not is (0.43)²(0.57)³

(ii) The probability that the two singles are on time is (0.57)²

Given that the singles are on time, the late couple can be chosen in 3 ways. The probability that it is late is 0.43 and the probability the other two couples are on time is (0.57)².

So the probability of (ii) is (0.57)²(3)(0.43)(0.57)² which looks better as (3)(0.43)(0.57)⁴ It follows that

P(X=2) = (0.43)²(0.57)³ + (3)(0.43)(0.57)⁴ = 0.0342 + 0.136 = 0.1700

Interpretations of P(X=3).

Here a single must arrive late, and also a couple. The late single can be chosen in 2 ways. The probability the person is late but the other single is not is (0.43)(0.57).

The late couple can be chosen in 3 ways. The probability one couple is late and the other two couples are not is (0.43)(0.57)². Putting things together, we find that

P(X=3) = (2)(3)(0.43)²(0.57)³ = 0.2050

Interpretation(s) P(X=4)

Since we either (i) have the two singles and one couple late, or (ii) two couples late. So the calculation will break up into two cases.

(i) Two singles and one couple late

Two singles' probability of being late = (0.43)² and One couple being late can be done in 3 ways, so its probability = 3(0.43)(0.57)²

(ii) Two couples late, one couple and two singles early

This can be done in only 3 ways, and its probability is 2(0.57)³(0.43)²

P(X=4) = (3)(0.43)³(0.57)² + (3)(0.57)³(0.43)² = 0.0775 + 0.103 = 0.1800

Interpretations of P(X=5)

For 5 people to be late, it has to be two couples and 1 single person.

For couples, The two late couples can be picked in 3 ways. Probability is 3(0.43)²(0.57)

The late single person can be picked in two ways too, 2(0.43)(0.57)

P(X=5) = 2(3)(0.43)³(0.57)² = 0.1550

Interpretations of P(X=6)

For 6 people to be late, we have either (i) the three couples are late or (ii) two couples and the two singles.

(i) Three couples late with two singles on time = (0.43)³(0.57)²

(ii) Two couples and two singles late

Two couples can be selected in 3 ways, so probability = 3(0.43)²(0.57)(0.43)²

P(X=6) = (0.43)³(0.57)² + 3(0.43)⁴(0.57) = 0.0258 + 0.0585 = 0.0843

Interpretation(s) of P(X=7)

For 7 people to be late, it has to be all three couples and only one single (which can be picked in two ways)

P(X=7) = 2(0.57)(0.43)⁴ = 0.0390

Interpretations of P(X=8)

Everybody had to be late

P(X=8) = (0.43)⁵ = 0.0147

6 0
2 years ago
How much heat Q2Q2 is transferred to the skin by 25.0 gg of steam onto the skin? The heat of vaporization for steam is L=2.256×1
astraxan [27]

Answer:

56400Joules

Explanation:

The quantity of heat required is expressed as;

Q = mL

m is the mass = 25g = 0.025kg

L is the latent heat of vaporization for steam = 2.256×10^6J/kg

Substitute into the formula as shown;

Q = 0.025×2.256×10^6

Q = 56400Joules

Hence the quantity of hear required is 56400Joules

3 0
2 years ago
A wind turbine works by slowing the air that passes its blades and converting much of the extracted kinetic energy to electric e
ddd [48]

Answer:

2649600 Joules

Explanation:

Efficiency = 40%

m = Mass of air = 92000 kg

v = Velocity of wind = 12 m/s

Kinetic energy is given by

K=\frac{1}{2}mv^2\\\Rightarrow K=\frac{1}{2}\times 92000\times 12^2\\\Rightarrow K=6624000\ J

The kinetic energy of the wind is 6624000 Joules

The wind turbine extracts 40% of the kinetic energy of the wind

E=0.4\times K\\\Rightarrow E=0.4\times 6624000\\\Rightarrow E=2649600\ J

The energy extracted by the turbine every second is 2649600 Joules

8 0
2 years ago
Other questions:
  • A metal ball with diameter of a half a centimeter and hanging from an insulating thread is charged up with 1010 excess electrons
    10·1 answer
  • A trooper is moving due south along the freeway at a speed of 23 m/s. at time t = 0, a red car passes the trooper. the red car m
    12·2 answers
  • Marcia is given an incomplete chemical equation that includes the number of nitrogen atoms present in the products of the reacti
    5·2 answers
  • You are learning about energy transformations in science class. Mel and Sam's built this set-up to see if light energy could be
    6·1 answer
  • A brick is resting on a rough incline as shown in the figure. The friction force acting on the brick, along the incline, is
    9·2 answers
  • Carbon dioxide (CO2) gas within a piston–cylinder assembly undergoes a process from a state where p1 = 5 lbf/in.2 , V1 = 2.5 ft3
    9·1 answer
  • A 2530-kg test rocket is launched vertically from the launch pad. Its fuel (of negligible mass) provides a thrust force so that
    5·1 answer
  • You are moving at a speed 2/3 c toward Randy when shines a light toward you. At what speed do you see the light approaching you
    12·1 answer
  • What is the magnitude of the momentum of a 11kg object moving at 2.2 m/s?
    11·1 answer
  • The Problems: 1. Xavier starts at a position of 0 m and moves with an average speed of 0.50 m/s for 3.0 seconds. He normally mov
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!