Answer:
The concentration of mole evil at oxygen on that day is 0.00858 mol/L
Explanation:
Here, we want to calculate the concentration of molecular oxygen
The pressure on that day is 1.0 atm
Since oxygen is at a concentration of 21%, the pressure of oxygen will be 21/100 * 1 = 0.21 atm
Now let’s calculate the concentration;
From Ideal gas law;
PV = nRT
This can be written as;
P/RT = n/V
The term n/V refers to concentration;
Let’s make substitutions now;
P = pressure = 0.21 atm
R = molar gas constant = 0.0821 L•atm/mol•k
T = temperature = 25 = 25 + 273.15 = 298.15 K
Substituting these values, we have;
n/V = C = 0.21/(0.0821 * 298.15) = 0.00858 mol/L
Answer:
a) a = -g = 9.8 m/s²
, b) a = 0 m/s² and c) t1 = 0.0213 s
Explanation:
a) At the moment the marble is released its velocity is zero, so it has no resistance force, the only force acting is its weight, so the acceleration is the acceleration of gravity
a = -g = 9.8 m / s²
b) When the marble goes its terminal velocity all forces have been equalized, therefore, the sum of them is zero and consequently if acceleration is also zero
a = 0 m / s²
c) We have to assume a specific type of resistive force, for liquid in general the resistive force is proportional to the speed of the body.
The expression of this situation is
v = mg / b (1 -
)
For a very long time the exponential is zero, so the terminal velocity is
= mg / b
b = mg /
b = 5 10-3 9.8 / 0.3
b = 0.163
We already have all the data to calculate the time for v = ½
½
=
(1 -
)
½ = 1- e (- 0.163 t1 / 5 10-3)
e (-32.6 t1) = 1-0.5 (by ln())
-32.6 t1 = ln 0.5
t1 = -1 / 32.6 (-0.693)
t1 = 0.0213 s
Because the air inside the tires is kept at high pressure.
In fact, the force applied by the tires upwards to counter-balance the weight of the car (pushing downwards) is

where p is the pressure of the air inside the tires and A is the area of contact between the tire and the car. Therefore, a higher pressure means a larger force F, and eventually if the pressure p is higher enough the force F will be large enough to counterbalance the weight of the car.
Answer:
The angle between the blue beam and the red beam in the acrylic block is

Explanation:
From the question we are told that
The refractive index of the transparent acrylic plastic for blue light is 
The wavelength of the blue light is 
The refractive index of the transparent acrylic plastic for red light is 
The wavelength of the red light is 
The incidence angle is 
Generally from Snell's law the angle of refraction of the blue light in the acrylic block is mathematically represented as
![r_F = sin ^{-1}[\frac{sin(i) * n_a }{n_F} ]](https://tex.z-dn.net/?f=r_F%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%28i%29%20%2A%20%20n_a%20%7D%7Bn_F%7D%20%5D)
Where
is the refractive index of air which have a value of
So
![r_F = sin ^{-1}[\frac{sin(45) * 1 }{ 1.497} ]](https://tex.z-dn.net/?f=r_F%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%2845%29%20%2A%20%201%20%7D%7B%201.497%7D%20%5D)

Generally from Snell's law the angle of refraction of the red light in the acrylic block is mathematically represented as
![r_C = sin ^{-1}[\frac{sin(i) * n_a }{n_C} ]](https://tex.z-dn.net/?f=r_C%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%28i%29%20%2A%20%20n_a%20%7D%7Bn_C%7D%20%5D)
Where
is the refractive index of air which have a value of
So
![r_C = sin ^{-1}[\frac{sin(45) * 1 }{ 1.488} ]](https://tex.z-dn.net/?f=r_C%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%2845%29%20%2A%20%201%20%7D%7B%201.488%7D%20%5D)

The angle between the blue beam and the red beam in the acrylic block

substituting values


In quantum mechanics, particularly the wave-particle theory, it states that light behaves like a wave or a particle. For the wave behavior, its movement is measured in wavelengths while the time for each wavelength is the frequency. For the particle behavior, according to Planck, the energy of the photon (light particle) is determined as
E = hc/wavelength, where h is the Planck's constant (<span>6.626 x 10-34 J-s per particle) and c is the speed of light ( 3 x 10^8m/s)
As you can see, the energy of the photon is INVERSELY PROPORTIONAL to the wavelength with the Planck's constant as the constant of proportionality.</span>