Answer:
The correlation coeffcient for this case was provided:
r =0.934
And this coefficient is very near to 1 the maximum possible value, so then we can interpret that the relationship between the entrace exam score and the grade point average are strongly linearly correlated .
We can also find the
who represent the determination coefficient and we got:

And the interpretation for this is that a linear model explains appproximately 87.2% of the variability between the two variables
Step-by-step explanation:
Previous concepts
The correlation coefficient is a "statistical measure that calculates the strength of the relationship between the relative movements of two variables". It's denoted by r and its always between -1 and 1.
And in order to calculate the correlation coefficient we can use this formula:
The correlation coeffcient for this case was provided:
r =0.934
And this coefficient is very near to 1 the maximum possible value, so then we can interpret that the relationship between the entrace exam score and the grade point average are strongly linearly correlated .
We can also find the
who represent the determination coefficient and we got:

And the interpretation for this is that a linear model explains appproximately 87.2% of the variability between the two variables
Answer: 0.5898
Step-by-step explanation:
Given : J.J. Redick of the Los Angeles Clippers had a free throw shooting percentage of 0.901 .
We assume that,
The probability that .J. Redick makes any given free throw =0.901 (1)
Free throws are independent.
So it is a binomial distribution .
Using binomial probability formula, the probability of getting success in x trials :

, where n= total trials
p= probability of getting in each trial.
Let x be binomial variable that represents the number of a=makes.
n= 14
p= 0.901 (from (1))
The probability that he makes at least 13 of them will be :-

![=^{14}C_{13}(0.901)^{13}(1-0.901)^1+^{14}C_{14}(0.901)^{14}(1-0.901)^0\\\\=(14)(0.901)^{13}(0.099)+(1)(0.901)^{14}\ \ [\because\ ^nC_n=1\ \&\ ^nC_{n-1}=n ]\\\\\approx0.3574+0.2324=0.5898](https://tex.z-dn.net/?f=%3D%5E%7B14%7DC_%7B13%7D%280.901%29%5E%7B13%7D%281-0.901%29%5E1%2B%5E%7B14%7DC_%7B14%7D%280.901%29%5E%7B14%7D%281-0.901%29%5E0%5C%5C%5C%5C%3D%2814%29%280.901%29%5E%7B13%7D%280.099%29%2B%281%29%280.901%29%5E%7B14%7D%5C%20%5C%20%5B%5Cbecause%5C%20%5EnC_n%3D1%5C%20%5C%26%5C%20%5EnC_%7Bn-1%7D%3Dn%20%5D%5C%5C%5C%5C%5Capprox0.3574%2B0.2324%3D0.5898)
∴ The required probability = 0.5898
Proportion which can be used to represent equivalency of 3 feet in 1 yard and 12 feet in 4 yard is 3 : 1 : : 12 : 4
<h3><u>Solution:</u></h3>
Given that
There are 3 feet in one yard
And there are 12 feet in 4 yard
Number of feet in one yard = 3 that is feet : yard = 3 : 1
Number of feet in 4 yards = 12 that is feet : yard = 12 : 4
And 3 feet in 1 yard is equivalent to 12 feet in 4 yards means

That is 3 : 1 : : 12 : 4
A proportion is statement that two ratios are equal. It can be written in two ways: as two equal fractions a/b = c/d; or using a colon, a : b = c : d
Hence proportion which can be used to represent equivalency of 3 feet in 1 yard and 12 feet in 4 yard is 3 : 1 :: 12 : 4