answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zepelin [54]
2 years ago
10

A shopper pushes a grocery cart 41.9 m on level ground, against a 44.5 N frictional force. The cart has a mass of 16.3 kg. He pu

shes in a direction 17.5º below the horizontal. If the initial velocity was 1.9 m/s, and final speed was 12.6 m/s. What is the work done by the pushing force in unit of Joule?
Physics
1 answer:
Rashid [163]2 years ago
5 0

Answer:

Fp = 26.59[N]

Explanation:

This problem can be solved using the principle of work and energy conservation, i.e. the final kinetic energy of a body will be equal to the sum of the forces that do work on the body plus the initial kinetic energy.

We need to identify the initial data:

d = distance = 41.9[m]

Ff = friction force = 44.5 [N]

m = mass = 16.3 [kg]

v1 = 1.9 [m/s]

v2 = 12.6 [m/s]

The kinetic energy at the beginning can be calculated as follows:

E_{k1}= \frac{1}{2}*m*v_{1}^2 \\E_{k1}= \frac{1}{2}*16.3*(1.9)_{1}^2\\E_{k1}= 29.42[J]

And the final kinetic energy.

E_{k2}= \frac{1}{2}*m*v_{2}^2 \\E_{k2}= \frac{1}{2}*16.3*(12.6)^2\\E_{k2}= 1294[J]

The work is performed by two forces, the friction force and the pushing force, it is important to clarify that these forces are opposite in direction.

The weight of the cart also performs a work in the direction of movement since the plane is tilted down, this component of the weight of the cart must be parallel to the surface of the inclined plane.

W_{1-2}=-(44.5*41.9)+(16.3*9.81*sin(17.5)*41.9)+(F_{p}*41.9) \\therefore:\\E_{k1}+W_{1-2}=E_{k2}\\29.42+150.16+(F_{p}*41.9)=1294\\F_{p}=1114.42/41.9\\F_{p}=26.59[N]

You might be interested in
Ryan and Becca are moving a folding table out of the sunlight. A cup of lemonade, with the message 0.44 kg is on the table. Becc
jarptica [38.1K]
Calculate the weight of the table through the equation,

   W = mg

where W is the weight, m is the mass, and g is the acceleration due to gravity. Substituting the known values,
   W = (0.44 kg)(9.8 m/s²) 
   <em>W = 4.312 N</em>

The components of this weight can be calculated through the equation,

   Wx = W(sin θ) 

and Wy = W(cos θ)

x - component:
   Wx = W(sin θ)
Substituting,
  Wx = (4.312 N)(sin 150°) = <em>2.156 N</em>

  Wy = (4.312 N)(cos 150°) =<em> -3.734 N</em>
6 0
2 years ago
100-ft-long horizontal pipeline transporting benzene develops a leak 43 ft from the high-pressure end. The diameter of the leak
Amanda [17]

Answer:

Explanation:

The mass flow rate of benzene from the leak in the pipeline containing benzene is:

Q_m=AC_o\sqrt{2\rho g_cP_g}

Here, Q_m is the mass flow rate through the leak of the pipeline. A is the area of the hole, C_o is the discharge rate, \rho is the fluid density, g_c is the gravitational constant and P_g is the constant gauge pressure within the process unit.

The diametre of the leak (d) is 0.1 in. Convert from in to ft.

d=(0.1 in)(\frac{1ft}{12in})\\=8.33\times 10^{-3}ft

Calculate the area (A) of the hole. The area of the hole is.

A=\frac{\pi d^2}{4}

Substitute 3.14 for \pi and 8.33\times 10^{-3}ft for d and calculate A.

A=\frac{\pi d^2}{4}\\\\\frac{(3.14)(8.33\times 10^{-3})^2}{4}\\\\5.45\times 10^{-5}ft^2

The specific gravity of benzene is 0.8794. Specific gravity is the ratio of th density of a substance to the density of a reference substance.

Specific gravity of benzene = density of benzenee/denity of reference substance

Rewrite the expression in terms of density of benzene.

Density of benzene = specific gravity of benzene x density of reference substance

Take the reference substance as water. Density of water is 62.4\frac{Ib_m}{ft^3}. Calculate density of benzene.

Density of benzene = specific gravity of benzene x density of reference substance

=(0.8794)(62.4\frac{Ib_m}{ft^3})\\\\54.9\frac{Ib_m}{ft^3}

Calculate the pressure at the point of leak. The pressure is the average of the pressure of the high and low pressure end. Write the expression to calculate the average pressure.

Upstream x distance from upstream pressure end

P_g=+DOWNSTREAM PRESSURE X DISTANCE FROM THE DOWNSTREAM PRESSURE END/ TOTAL LENGTH OF THE HORIZONTAL PIPELINE

Calculate the distance from the downstream pressure end. The distance from upstream pressure end is 43 ft. Total of the pipe is 100 ft.

Distance from the downstream pressure end = Total length of the pipe - Distance from the upstream pressure end

The distance from upstream pressure end is 43 ft. Total length of the pipe is 100 ft. Substitute the values in the equation.

Distance from the downstream pressure end = Total length of the pipe - Distance from the upstream pressure end

= 100ft - 43ft = 57 ft

Substitute 50 psig for upstream, 43 ft fr distance from the upstream pressure end, 40 psig for downstream pressure, 57 ft for distance from the downstream pressure end, and 100 ft for the total length of the horizontal pipeline and calculate P_g.

Upstream x distance from upstream pressure end

P_g=+DOWNSTREAM PRESSURE X DISTANCE FROM THE DOWNSTREAM PRESSURE END/ TOTAL LENGTH OF THE HORIZONTAL PIPELINE

=\frac{(50psig\times 43ft)+(40psig \times 57ft)}{100ft}\\\\=44.3psig

Convert the pressure from psig to Ib_f/ft^2

P_g=(44.3psig)(\frac{1\frac{Ib_f}{ft^2}}{1psig})(144\frac{in^2}{ft^2})\\\\=6,379.2\frac{Ib_f}{ft^2}

The leak is like a sharp orifice. Take the value of the discharge coefficient as 0.61.

Substitute 5.45\times 10^{-5}ft^2 for A. 0.61 for C_o, 54.9\frac{Ib_m}{ft^3} for \rho, 32.17\frac{ft.Ib_m}{Ib_f.s^2} for g_c, and 6,379.2\frac{Ib_f}{ft^2} for P_g and calculate Q_m

Q_m=AC_o\sqrt{2\rho g_cP_g}\\\\=(5.45\times 10^{-5}ft^2)(0.61)\sqrt{2(54.9\frac{Ib_m}{ft^3})(32.17\frac{ft.Ib_m}{Ib_f.s^2})(6,379.2\frac{Ib_f}{ft^2})}\\\\(3.3245\times 10^{-5}ft^2)\sqrt{22,533,031.21\frac{Ib^2_m}{ft^4.s^2}}\\\\=0.158\frac{Ib_m}{s}

The mass flow rate of benzene through the leak in the pipeline is 0.158\frac{Ib_m}{s}

8 0
3 years ago
Match each projection to its description.
babymother [125]
A goes with 2 and B goes with 1.
6 0
2 years ago
Read 2 more answers
You are stranded in a blizzard. You need water to drink to drink,and you're trying to stay warm.should the melt the snow and dri
Crazy boy [7]
It would be a really bad idea to eat the snow because you obviously are trying to stay warm right? Well, the best thing to do is melt the snow. However, the process of melting the snow would have a few complications as well. But yes, the latter idea (drinking the snow) is a better idea (not the best).
7 0
2 years ago
Which statement best describes what energy transfer diagrams show? Energy can change form, but the total amount of energy stays
Rom4ik [11]
Energy can change form, but the total amount of energy stays the same.
3 0
2 years ago
Read 2 more answers
Other questions:
  • A tall cylinder contains 30 cm of water. oil is carefully poured into the cylinder, where it floats on top of the water, until t
    8·2 answers
  • Titin is a spring-shaped elastic protein that attaches to the thick filament and anchors it to the Z-discs of a sarcomere. If ti
    15·1 answer
  • A coworker did not clean his work area before going home this could cause an accident so you quickly clean up the next day you s
    10·2 answers
  • A majorette in the Rose Bowl Parade tosses a baton into the air with an initial angular velocity of 2.5 rev/s. If the baton unde
    11·1 answer
  • A very long line of charge with charge per unit length +8.00 μC/m is on the x-axis and its midpoint is at x = 0. A second very l
    11·1 answer
  • One of the main factors driving improvements in the cost and complexity of integrated circuits (ICs) is improvements in photolit
    6·1 answer
  • A horizontal pipe of diameter 0.81 m has a smooth constriction to a section of diameter 0.486 m . The density of oil flowing in
    12·1 answer
  • While playing basketball in PE class, Logan lost his balance after making a lay-up and colliding with the padded wall behind the
    11·1 answer
  • A student on a skateboard is moving at a speed of 1.40 m/s at the start of a 2.15 m high and 12.4 m long incline. The total mass
    9·1 answer
  • A 4.00-Ω resistor, an 8.00-Ω resistor, and a 24.0-Ω resistor are connected together. (a) What is the maximum resistance that can
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!