Original price of the item = $14.95
Price after discount = $13.79
Discount offered = original price - price after discount = 14.95- 13.79 = $1.16
Now let us find the percentage of discount offered.
Percentage discount is given by the formula:

Where MP= Marked price= original price
SP= selling price= price after discount

Percentage discount = 7.759 %
Answer:
2.6
Step-by-step explanation:
just put one part of the equation in y1 and the other in y2 and hit 2nd trace 5 an hit enter 4 times
then it will bring a graph hit enter 3 time again and it will show u the answer at the bottom left
Answer:
t(d) = 0.01cos(5π(d-0.3)/3)
Step-by-step explanation:
Since we are given the location of a maximum, it is convenient to use a cosine function to model the torque. The horizontal offset of the function will be 0.3 m, and the horizontal scaling will be such that one period is 1.2 m. The amplitude is given as 0.01 Nm.
The general form is ...
torque = amplitude × cos(2π(d -horizontal offset)/(horizontal scale factor))
We note that 2π/1.2 = 5π/3. Filling in the given values, we have ...
t(d) = 0.01·cos(5(d -0.3)/3)
Answer:
Step-by-step explanation:
The domain of a function is the set for which the function is defined. Our function is the function
. This function is defined regardless of the value of x, so it is defined for every real value of x. That is, it's domain is the set {x|x is a real number}.
The range of the function is the set of all possible values that the function might take, that is {y|y=6x-4}. Recall that every real number y could be written of the form y=6x-4 for a particular x. So the range of the function is the set {y|y is a real number}.
Note that as x gets bigger, the value of 6x-4 gets also bigger, then it doesn't approach any particular number. Note also that as x approaches - infinity, the value of 6x-4 approaches also - infinity. In this case, we don't have any horizontal asymptote. Since the function is defined for every real number, it doesn't have any vertical asymptote. Since h is a linear function, it cannot have any oblique asymptote, then h doesn't have any asymptote.