Since length of diagonal (
) is less than diameter of circle ( 11 cm ) , Therefore , the square will fit inside the circle without touching the edge of the circle.
<u>Step-by-step explanation:</u>
Here we have , A circle has diameter of 11 cm A square has side length of 7 cm . Use Pythagoras’ Theorem to show that the square will fit inside the circle without touching the edge of the circle . Let's find out:
We know the concept that for any square to fit inside the circle without touching the edge of circle , diagonal of square must be less than diameter of circle . Let's find out length of diagonal by using Pythagoras Theorem :

For a square , 
⇒ 
⇒ 
⇒ 
⇒ 
Since length of diagonal (
) is less than diameter of circle ( 11 cm ) , Therefore , the square will fit inside the circle without ruching the edge of the circle.
We are asked in the problem to determine the number of quarters that are needed to complete 4975 units given the equation y = x6 − 25x4 + 199x2 where y is the number of manufactured units and x is the number of quarters needed.
substituting y = 4975, we find x. <span>x is readily found using calculator.</span>
Answer:
Step-by-step explanation:
After one year
A=p(1+r/n)^nt
=2000(1+0.03/12)^12*1
=2000(1+0.0025)^12
=2000(1.0025)^12
=2000(1.0304)
=$2060.8
After two-years
A=p(1+r/n)^nt
=2060.8(1+0.03/12)^12*2
=2060.8(1+0.0025)^24
=2060.8(1.0025)^24
=2060.8(1.0618)
=$2188.157
After three years
A=p(1+r/n)^nt
=2188.157(1+0.03/12)^12*3
=2188.157(1+0.0025)^36
=2188.157(1.0025)^36
=2188.157(1.0941)
=$2394.063