answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariana [72]
2 years ago
13

Write SQL queries to answer the following questions: What are the names of the course(s) that student Altvater took during the s

emester I-2018? List the names of the students who have taken at least one course that Professor Collins is qualified to teach. List the names of the students who took at least one course with ""Syst"" in its name during the semester I-2018.

Engineering
1 answer:
amm18122 years ago
6 0

Answer:

See explanations

Explanation:

Consider the following Venn diagram to retrieve the name of course that student Altvater took during semester I-2015.

• In above Venn diagram inner Ellipse represent the subquery part, this subquery part select the Student ID from STUDENT table.

• Second sub query is used to determine the SectionNo of all student whose studentID retrived in the first subquery

• Finally the main query displays the CourseName from COURSE table.

You might be interested in
A certain working substance receives 100 Btu reversibly as heat at a temperature of 1000℉ from an energy source at 3600°R. Refer
Valentin [98]

Answer:

Explanation:

t1 = 1000 F = 1460 R

t0 = 80 F = 540 R

T2 = 3600 R

The working substance has an available energy in reference to the 80F source of:

B1 = Q1 * (1 - T0 / T1)

B1 = 100 * (1 - 540 / 1460) = 63 BTU

The available energy of the heat from the heat wource at 3600 R is

B2 = Q1 * (1 - T0 / T2)

B2 = 100 * (1 - 540 / 3600) = 85 BTU

The reduction of available energy between the source and the 1460 R temperature is:

B3 = B2 - B1 = 85 - 63 = 22 BTU

6 0
2 years ago
A cylindrical part of diameter d is loaded by an axial force P. This causes a stress of P/A, where A = πd2/4. If the load is kno
Afina-wow [57]

Answer:

1.505

Explanation:

cylindrical part of diameter d is loaded by an axial force P. This causes a stress of P/A, where A = πd2/4. If the load is known with an uncertainty of ±11 percent, the diameter is known within ±4 percent (tolerances), and the stress that causes failure (strength) is known within ±20 percent, determine the minimum design factor that will guarantee that the part will not fail.

stress is force per unit area

stress=P/A

A = πd^2/4.

uncertainty of axial force P= +/-.11

s=+/-.20, strength

d=+/-.04 diameter

fail load/max allowed

minimum design=fail load/max allowed

minimum design =s/(P/A)

sA/P

A=(\pi.96d^2)/4, so Amin=

0.96^{2} (because the diameter  at minimum is (1-0.04=0.96)

minimum design=Pmax/(sminxAmin)

1.11/(.80*.96^2)=

1.505

8 0
2 years ago
Superheated steam at an average temperature 200 C is transported through a steel pipe (k=50 W/mK, D_0=8.0 cm,D_i=6.0 cm,and L=20
Zarrin [17]

The total amount of daily heat transfer is 1382.38 M w.

The temperature on the outside surface of the gypsum plaster insulation is 17.96 ° C.

<u>Explanation:</u>

Given data,

T_{\infty} = 10° C

h_{0} = 250 w/ m^{2} k

Pipe length = 20 m

Inner diameter d_{1} = 6 cm, r_{1} = 3 cm

Outer diameter d_{2} = 8 cm, r_{2} = 4 cm

The thickness of insulation is 4 cm.

r_{3} = r_{2} + 4

= 4+4

r_{3} = 8 cm

h_{0} is the heat transfer coefficient of  convection inside, h_{i} is the heat transfer coefficient of  convection outside.

The heat transfer rate between ambient and steam is

q=\frac{T_{S}-T_{\infty}}{\frac{1}{h_{i}\left(2 \pi r_{1} L\right)}+\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi K_{1} L}+\frac{\ln \left(r_{3}/ r_{2}\right)}{2 \pi K_{2} L}+\frac{1}{h_{0}\left(2 \pi r_{3} L\right)}} watt

=  \begin{aligned}&\frac{1}{800(2 \pi x \cdot 03 \times 20)}\++\frac{\ln (4 / 3)}{2 \pi \times 50 \times 20}+\frac{\ln (8 / 4)}{2 \pi \times 0.5 \times 20}+\frac{1}{200(2 \pi x \cdot 08 \times 20)}\end{aligned} watt

= \frac{190}{0.0003317+0.0000458+0.0110+0.0004976} watt

q = 15999.86 watt

The total amount of daily heat transfer = 15999.86 × 86400

= 1382.387904 watt

= 1382.38 M w

The total amount of daily heat transfer is 1382.38 M w.

b) The temperature on the outside surface of the gypsum plaster insulation.

q = \frac{T_{3}-T_{\infty}}{\frac{1}{\ln \left(2 \pi \ r_{3} L\right)}}

15999.86   =\frac{\frac{1}{T_3}-10}{\frac{1}{200(2 \pi . 08 \times 20)}}

T_{3} - 10 = 7.96

T_{3} = 17.96 ° C.

4 0
2 years ago
1.00-L insulated bottle is full of tea at 90.08°C. You pour out one cup of tea and immediately screw the stopper back on the bot
liberstina [14]

Answer:

T_{f} = 90.07998 ° C

Explanation:

This is a calorimetry process where the heat given by the Te is absorbed by the air at room temperature (T₀ = 25ºC) with a specific heat of 1,009 J / kg ºC, we assume that the amount of Tea in the cup is V₀ = 100 ml. The bottle being thermally insulated does not intervene in the process

                 Qc = -Qb

                M c_{e_Te} (T₁ -T_{f}) = m c_{e_air} (T_{f}-T₀)

Where M is the mass of Tea that remains after taking out the cup, the density of Te is the density of water plus the solids dissolved in them, the approximate values are from 1020 to 1200 kg / m³, for this calculation we use 1100 kg / m³

   ρ = m / V  

   V = 1000 -100 = 900 ml  

   V = 0.900 l (1 m3 / 1000 l) = 0.900 10⁻³ m³  

   V_air = 0.100 l = 0.1 10⁻³ m³  

Tea Mass  

     M = ρ V_te  

     M = 1100 0.9 10⁻³  

     M = 0.990 kg  

Air mass  

     m = ρ _air V_air  

     m = 1.225 0.1 10⁻³  

     m = 0.1225 10⁻³ kg  

(m c_{e_air} + M c_{e_Te}) T_{f}. = M c_{e_Te} T1 - m c_{e_air} T₀  

T_{f} = (M c_{e_Te} T₁ - m c_{e_air} T₀) / (m c_{e_air} + M c_{e_Te})  

Let's calculate  

T_{f} = (0.990 1100 90.08– 0.1225 10⁻³ 1.225 25) / (0.1225 10⁻³ 1.225 + 0.990 1100)  

T_{f} = (98097.12 -3.75 10⁻³) / (0.15 10⁻³ +1089)  

T_{f} = 98097.11 / 1089.0002  

T_{f} = 90.07998 ° C  

This temperature decrease is very small and cannot be measured

3 0
2 years ago
A paint company produces glow in the dark paint with an advertised glow time of 15 min. A painter is interested in finding out i
andrew11 [14]

Answer:

p_v = P(z

Now we can decide based on the significance level \alpha. If p_v we reject the null hypothesis and in other case we FAIL to reject the null hypothesis.

\alpha=0.05 we see that p_v< \alpha so then we have enough evidence to reject the null hypothesis and we can conclude that the true mean is significantly less than 15

\alpha=0.01 we see that p_v> \alpha so then we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is NOT significantly less than 15

\alpha=0.001 we see that p_v> \alpha so then we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is NOT significantly less than 15

Explanation:

For this case they conduct the following system of hypothesis for the ture mean of interest:

Null hypothesis: \mu \leq 15

Alternative hypothesis: \mu >15

The statistic for this hypothesis is:

z = \frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}

And on this case the value is given z = -2.30

For this case in order to take a decision based on the significance level we need to calculate the p value first.

Since we have a lower tailed test the p value would be:

p_v = P(z

Now we can decide based on the significance level \alpha. If p_v we reject the null hypothesis and in other case we FAIL to reject the null hypothesis.

\alpha=0.05 we see that p_v< \alpha so then we have enough evidence to reject the null hypothesis and we can conclude that the true mean is significantly less than 15

\alpha=0.01 we see that p_v> \alpha so then we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is NOT significantly less than 15

\alpha=0.001 we see that p_v> \alpha so then we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is NOT significantly less than 15

3 0
2 years ago
Other questions:
  • Define a) Principal Plane b) Principal Stress c) anelasticity d) yield point e) ultimate tensile stress f) hardness g) toughness
    5·1 answer
  • Define a function pyramid_volume with parameters base_length, base_width, and pyramid_height, that returns the volume of a pyram
    10·1 answer
  • 13–27. The conveyor belt is moving downward at 4 m&gt;s. If the coefficient of static friction between the conveyor and the 15-k
    11·1 answer
  • Water enters a circular tube whose walls are maintained at constant temperature at specified flow rate and temperature. For full
    8·1 answer
  • Identify the four engineering economy symbols and their values from the following problem statement. Use a question mark with th
    10·1 answer
  • Complete the following sentence.
    5·1 answer
  • Who can work on a fixed ladder that extends more than 24 feet?
    11·1 answer
  • 6. You are an electrician working in an industrial plant. You are building a motor control cabinet that contains six motor start
    6·1 answer
  • 140-character statement that completes this sentence: I pledge to not text and drive because...
    12·1 answer
  • A dryer is shaped like a long semi-cylindrical duct of diameter 1.5 m. The base of the dryer is occupied with water-soaked mater
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!