answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ZanzabumX [31]
2 years ago
13

A certain working substance receives 100 Btu reversibly as heat at a temperature of 1000℉ from an energy source at 3600°R. Refer

red to as receiver temperature of 80℉, calculate: A. the available energy of the working substance ( 63 Btu ) B. the available portion of the 100 Btu added at the source temperature ( 85 Btu ) C. the reduction in available energy between the source temperature and the 1000℉ temperature ( 22 Btu )
Engineering
1 answer:
Valentin [98]2 years ago
6 0

Answer:

Explanation:

t1 = 1000 F = 1460 R

t0 = 80 F = 540 R

T2 = 3600 R

The working substance has an available energy in reference to the 80F source of:

B1 = Q1 * (1 - T0 / T1)

B1 = 100 * (1 - 540 / 1460) = 63 BTU

The available energy of the heat from the heat wource at 3600 R is

B2 = Q1 * (1 - T0 / T2)

B2 = 100 * (1 - 540 / 3600) = 85 BTU

The reduction of available energy between the source and the 1460 R temperature is:

B3 = B2 - B1 = 85 - 63 = 22 BTU

You might be interested in
A 60-kg woman holds a 9-kg package as she stands within an elevator which briefly accelerates upward at a rate of g/4. Determine
Anuta_ua [19.1K]

Answer:

force R = 846.11 N

lifting force L = 110.36 N

if cable fail complete both R and L will be zero

Explanation:

given data

mass woman mw = 60 kg

mass package mp = 9 kg

accelerates rate a = g/4

to find out

force R and lifting force L and if cable fail than what values would R and L acquire

solution

we calculate here first reaction R force

we know elevator which accelerates upward

so now by direction of motion , balance the force that is express as

R - ( mw + mp ) × g = ( mw + mp ) × a

here put all these value and a = g/4 and use g = 9.81 m/s²

R - ( 60 + 9 ) × 9.81 = ( 60 + 9  ) × g/4

R = ( 69  ) × 9.81/4  + ( 69 ) 9.81

R = 69  ( 9.81 + 2.4525 )

force R = 846.11 N

and

lifting force is express as here

lifting force = mp ( g + a)

put here value

lifting force = 9 ( 9.81 + 9.81/4)

lifting force L = 110.36 N

and

we know if cable completely fail than body move free fall and experience no force

so both R and L will be zero

5 0
2 years ago
A converging-diverging nozzle is designed to operate with an exit Mach number of 1.75 . The nozzle is supplied from an air reser
Flura [38]

Answer:

a. 4.279 MPa

b. 3.198 MPa to 4.279 MPa

c. 0.939 MPa

d. Below 3.198 MPa

Explanation:

From the given parameters

M_{exit} = 1.75 MPa  

M at 1.6 MPa gives A_{exit}/A* = 1.2502

M at 1.8 MPa gives  A_{exit}/A* = 1.4390

Therefore, by interpolation, we have M_{exit} = 1.75 MPa  gives A

However, we shall use M_{exit} = 1.75 MPa and A

Similarly,

P_{exit}/P₀ = 0.1878

a) Where the nozzle is choked at the throat there is subsonic flow in the following diverging part of the nozzle. From tables, we have

A_{exit}/A* = 1.387. by interpolation M

Therefore P_{exit} = P₀ × P

Which shows that the nozzle is choked for back pressures lower than 4.279 MPa

b) Where there is a normal shock at the exit of the nozzle, we have;

M₁ = 1.75 MPa, P₁ = 0.1878 × 5 = 0.939 MPa

Where the normal shock is at M₁ = 1.75 MPa, P₂/P₁ = 3.406

Where the normal shock occurs at the nozzle exit, we have

P_b = 3.406\times 0.939 = 3.198 MPa

Where the shock occurs t the section prior to the nozzle exit from the throat, the back pressure was derived as P_b = 4.279 MPa

Therefore the back pressure value ranges from 3.198 MPa to 4.279 MPa

c) At M_{exit} = 1.75 MPa  and P

d) Where the back pressure is less than 3.198 MPa according to isentropic flow relations supersonic flow will exist at the exit plane    

8 0
2 years ago
An electrical utility delivers 6.25E10 kWh of power to its customers in a year. What is the average power required during the ye
Sindrei [870]

Answer:

The overall Utility delivered to customers in a year 'U' = 6.25 X 10¹⁰Kwh

However, the average power P, required for a year, t  = ? Kw

Expressing their relationship, we will have

             U = P x t

Given t = 1 year = 24 x 365 hours (assume a year operation is 365 days)

          t = 8760 hours

P = \frac{62500000000}{8760}

P = 7134.7Kw

Hence, the average power required during the year is 7,135Kw

Now to calculate the energy used by the power plant in a year (in quads)?

Recall, Efficiency, η = Power Output/Power Input (100)

so, we have

η = P₀/P₁, given

0.45 = \frac{7134.7Kw}{P₁}

P₁ = 15,855Kw

the total energy E₁ used in a year = 15,855x24x365 = 138.89MJoules

So to convert this to quads, Note;

1 quads of energy = 10¹⁵ Joules

The total energy used is 0.000000139 quads

Now to find the cubic feet of natural gas required to generate this power?

Note: 0.29Kwh of Power generated  = 1 cubic feet of natural gas used

Since, the power plant generated = 62500000000Kwh

The cubic feet of natural gas used = \frac{62500000000}{0.29}

Hence, 2.155x10²⁰cubic feet of N.gas was used to generate this much power.

8 0
2 years ago
A cylindrical specimen of a brass alloy having a length of 60 mm (2.36 in.) must elongate only 10.8 mm (0.425 in.) when a tensil
Gemiola [76]

The radius of the specimen is 60 mm

<u>Explanation:</u>

Given-

Length, L = 60 mm

Elongated length, l = 10.8 mm

Load, F = 50,000 N

radius, r = ?

We are supposed to calculate the radius of a cylindrical brass specimen in order to produce an elongation of 10.8 mm when a load of 50,000 N is applied. It is necessary to compute the strain corresponding to this

elongation using Equation:

ε = Δl / l₀

ε = 10.8 / 60

ε = 0.18

We know,

σ = F / A

Where A = πr²

According to the stress-strain curve of brass alloy,

σ = 440 MPa

Thus,

sigma = 50,000 / \pi  (r)^2\\\\440 X 10^6 = \frac{50,000}{3.14 X (r)^2}\\\\r = 0.06m\\r = 60mm\\\\\\

Therefore, the radius of the specimen is 60 mm

3 0
2 years ago
A 50-kg iron block and 20-kg copper block, both initially at 80 oC, are dropped into a large lake at 15 oC. Thermal equilibrium
bija089 [108]
I need this answer to please
5 0
2 years ago
Other questions:
  • Radioactive wastes are temporarily stored in a spherical container, the center of which is buried a distance of 10 m below the e
    13·1 answer
  • Oil in an engine is being cooled by air in a cross-flow heat exchanger, where both fluids are unmixed. Oil (cp = 2000 J/kg. K) f
    12·1 answer
  • A subway car leaves station A; it gains speed at the rate of 4 ft/s^2 for of until it has reached and then at the rate 6 then th
    8·1 answer
  • Water flows downward through a vertical 10-mm-diameter galvanized iron pipe with an average velocity for 5.0 m/s and exits as a
    5·1 answer
  • The critical resolved shear stress for iron is 27 MPa (4000 psi). Determine the maximum possible yield strength for a single cry
    12·1 answer
  • The atomic radii of a divalent cation and a monovalent anion are 0.77 nm and 0.136 nm, respectively.1- Calculate the force of at
    11·1 answer
  • - Consider a 2024-T4 aluminum material with ultimate tensile strength of 70 ksi. In a given application, a component of this mat
    7·1 answer
  • Suppose we store a relation R (x,y) in a grid file. Both attributes have a range of values from 0 to 1000. The partitions of thi
    12·1 answer
  • Which requirement is an appropriate reason for a business to use information technology (IT) tools
    9·1 answer
  • The rectangular frame is composed of four perimeter two-force members and two cables AC and BD which are incapable of supporting
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!