Answer:
a) parallel to the ground True
c) parallel to the ground towards man True
Explanation:
To examine the possibilities, we propose the solution of the problem.
Let's use Newton's second law
F = m a
The force is exerted by the arm and the centripetal acceleration of the golf club, which in this case varies with height.
In our case, the stick is horizontal in the middle of the swing, for this point the centripetal acceleration is directed to the center of the circle or is parallel to the arm that is also parallel to the ground;
Ask the acceleration vector
a) parallel to the ground True
b) down. False
c) parallel to the ground towards True men
d) False feet
e) the head. False
Answer:
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
c) True. Information is missing to perform the calculation
Explanation:
Let's consider solving this exercise before seeing the final statements.
We use Newton's second law Rotational
τ = I α
T r = I α
T gR = I α
Alf = T R / I (1)
T = α I / R
Now let's use Newton's second law in the mass that descends
W- T = m a
a = (m g -T) / m
The two accelerations need related
a = R α
α = a / R
a = (m g - α I / R) / m
R α = g - α I /m R
α (R + I / mR) = g
α = g / R (1 + I / mR²)
We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant
Let's review the claims
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
b) False. Missing data for calculation
c) True. Information is missing to perform the calculation
d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases
Answer:
Solution given;
load =600N
effort=?
load distance: 0.6m
effort distance;2.6m
we have
load *load distance :effort *effort distance
0.6*600=effort *2.6
360/2.6=effort
effort:138.46N
<u>R</u><u>e</u><u>q</u><u>u</u><u>i</u><u>r</u><u>e</u><u>d</u><u> </u><u>e</u><u>f</u><u>f</u><u>o</u><u>r</u><u>t</u><u> </u><u>i</u><u>s</u><u> </u><u>1</u><u>3</u><u>8</u><u>.</u><u>5</u><u>N</u><u>.</u>
Answer:
South and West
Explanation:
Those people are pushing the hardest. It will move south faster than it moves west.
Answer:
86.4 N downward
Explanation:
Force: This can be defined as the product of mass and acceleration of a body.
The S.I unit of Force is Newton(N).
The Expression of force is given as,
F = ma ................ Equation 1
Where F = force of the parachute harness, m = mass of the skydiver, a = acceleration of the skydiver.
Given: m = 72 kg, a = 1.2 m/s²
Substitute into equation 1
F = 72(1.2)
F = 86.4 N down ward.
Hence the force on the parachute harness = 86.4 N downward