Answer:
The direction the plane would have to fly to compensate for a wind velocity of 62.0 km/h[N] is 4.5° S of W
Explanation:
The given parameters are;
Velocity of Jet = 792 km/h
Direction of jet velocity = West
Velocity of wind = 62.0 km/h
Direction of wind velocity = North
Therefore, the jet has to have a component of 62.0 km/h South of West to compensate for the wind velocity
The direction of the plane, θ° South of West (S of W) to compensate for the wind is given as follows;

Therefore;

The direction the plane would have to fly to compensate for a wind velocity of 62.0 km/h[N] = 4.5° S of W.
Answer:
a) Volt
Explanation:
The standard metric unit on electric potential difference is the volt.
Answer:
Explanation:
a )
This type of spectrum is called line emission spectrum . Because it consists of lines . It is emission spectrum because it is due to emission of radiation from a source .
b ) The wavelength of a photon is inversely proportional to its energy . Photon due to transition between n = 1 and n = 3 will have higher energy than
that due to transition between n = 2 and n = 5 . So the later photon ( B) will have greater wavelength or photon due to transition between n = 2 and n = 5 will have greater wavelength .
For astronomical objects, the time period can be calculated using:
T² = (4π²a³)/GM
where T is time in Earth years, a is distance in Astronomical units, M is solar mass (1 for the sun)
Thus,
T² = a³
a = ∛(29.46²)
a = 0.67 AU
1 AU = 1.496 × 10⁸ Km
0.67 * 1.496 × 10⁸ Km
= 1.43 × 10⁹ Km
Answer:
<h3>0.99 m</h3>
Explanation:
Average velocity is the change of rate of displacement with respect to time;
Average velocity = Displacement/Time
Given
Average velocity of the frog = 1.8m/s
Time = 0.55s
Required
Displacement of the frog
Substitute the given parameters into the formula;
1.8 = displacement/0.55
cross multiply
Displacement = 1.8*0.55
Displacement = 0.99 m
Hence the frog's displacement is 0.99m