The chemical formula for water, H2o means that each water molecule contains one oxygen atom and two hydrogen atoms. This is the formula for water which has a liquid form, a solid form as ice, and also a gaseous form as water vapor.
Answer:
a) 2.5m/s
b) 0.91m/s
c) 0m/s
Explanation:
Average velocity can be said to be the ratio of the displacement with respect to time.
Average speed on the other hand is the ratio of distance in relation to time
Thus, to get the average velocity for the first half of the swim
V(average) = displacement of first trip/time taken on the trip
V(average) = 50/20
V(average) = 2.5m/s
Average velocity for the second half of the swim will be calculated in like manner, thus,
V(average) = 50/55
V(average) = 0.91m/s
Average velocity for the round trip will then be
V(average) = 0/75, [50+25]
V(average) = 0m/s
Answer:
A) x _electron = 0.66 10² m
, B) x _Eart = 1.13 10² m
, C) d_sphere = 1.37 10⁻² mm
Explanation:
A) Let's use a ball for the nucleus, the electron is at a farther distance the sphere for the electron must be at a distance of
Let's use proportions rule
x_ electron = 0.529 10⁻¹⁰ /1.2 10⁻¹⁵ 1.5
x _electron = 0.66 10⁵ mm = 0.66 10² m
B) the radii of the Earth and the sun are
= 6.37 10⁶ m
tex]R_{Sum}[/tex] = 6.96 10⁸ m
Distance = 1.5 10¹¹ m
x_Earth = 1.5 10¹¹ / 6.96 10⁸ 1.5
x _Eart = 1.13 10² m
C) The radius of a sphere that represents the earth, if the sphere that represents the sun is 1.5 mm, let's use another rule of proportions
d_sphere = 1.5 / 6.96 10⁸ 6.37 10⁶
d_sphere = 1.37 10⁻² mm
The question above can be answered through using the concept of Conservation of Momentum which may be expressed as,
m1v1 + m2v2 = mTvT
where m1 and v1 are mass and initial velocity of Tex, 2s are that of the bull, and the Ts are the total. Then substituting,
(85 kg)(3 m/s) + (520 kg)(13 m/s) = (520 + 85)(vT)
The value of vT obtained from above equation is 11.6 m/s
k = spring constant of the spring = 85 N/m
m = mass of the box sliding towards the spring = 3.5 kg
v = speed of box just before colliding with the spring = ?
x = compression the spring = 6.5 cm = 6.5 cm (1 m /100 cm) = 0.065 m
the kinetic energy of box just before colliding with the spring converts into the spring energy of the spring when it is fully compressed.
Using conservation of energy
Kinetic energy of spring before collision = spring energy of spring after compression
(0.5) m v² = (0.5) k x²
m v² = k x²
inserting the values
(3.5 kg) v² = (85 N/m) (0.065 m)²
v = 0.32 m/s