answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Monica [59]
2 years ago
5

Scotesia swims from the north end to the south end of a 50.0 m pool in 20.0 s. As she begins to make the return trip , Sean, who

has been enthusiastically cheering in the stands fall into the pool and startles Scotesia. Her return trip to the starting position takes 55.0 s. A) What is her average velocity for the first half of the swim? b) What is her average velocity for the second half of the swim? c) What is her average velocity for the roundtrip?
Physics
1 answer:
slega [8]2 years ago
3 0

Answer:

a) 2.5m/s

b) 0.91m/s

c) 0m/s

Explanation:

Average velocity can be said to be the ratio of the displacement with respect to time.

Average speed on the other hand is the ratio of distance in relation to time

Thus, to get the average velocity for the first half of the swim

V(average) = displacement of first trip/time taken on the trip

V(average) = 50/20

V(average) = 2.5m/s

Average velocity for the second half of the swim will be calculated in like manner, thus,

V(average) = 50/55

V(average) = 0.91m/s

Average velocity for the round trip will then be

V(average) = 0/75, [50+25]

V(average) = 0m/s

You might be interested in
A student decides to spend spring break by driving 50 miles due east, then 50 miles 30 degrees south of east, then 50 miles 30 d
stira [4]

Answer:600 miles, 12

Explanation: The movement described in the question exhibits that of a polygon. Exhibiting a constant distance and angle with only varying direction until the starting point is reached.

The sum of exterior angles of a polygon = 360 degrees.

Exterior angle of a polygon = (360 ÷ number of sides)

Therefore,

Number of sides = 360 ÷ exterior angle

Exterior angle = 30 degrees

Hence,

Number of sides = 360 ÷ 30 = 12 sides

Since distance traveled of 50 miles is the same for each displacement ;

Total displacement = distance traveled * number of sides

Total displacement = 50 * 12 = 600 miles.

5 0
2 years ago
Angular and Linear Quantities: A child is riding a merry-go-round that has an instantaneous angular speed of 1.25 rad/s and an a
serious [3.7K]

To solve this problem we will use the kinematic equations of angular motion in relation to those of linear / tangential motion.

We will proceed to find the centripetal acceleration (From the ratio of the radius and angular velocity to the linear velocity) and the tangential acceleration to finally find the total acceleration of the body.

Our data is given as:

\omega = 1.25 rad/s \rightarrow The angular speed

\alpha = 0.745 rad/s2 \rightarrow The angular acceleration

r = 4.65 m \rightarrow The distance

The relation between the linear velocity and angular velocity is

v = r\omega

Where,

r = Radius

\omega = Angular velocity

At the same time we have that the centripetal acceleration is

a_c = \frac{v^2}{r}

a_c = \frac{(r\omega)^2}{r}

a_c = \frac{r^2\omega^2}{r}

a_c = r \omega^2

a_c = (4.65 )(1.25 rad/s)^2

a_c = 7.265625 m/s^2

Now the tangential acceleration is given as,

a_t = \alpha r

Here,

\alpha = Angular acceleration

r = Radius

\alpha = (0.745)(4.65)

\alpha = 3.46425 m/s^2

Finally using the properties of the vectors, we will have that the resulting component of the acceleration would be

|a| = \sqrt{a_c^2+a_t^2}

|a| = \sqrt{(7.265625)^2+(3.46425)^2}

|a| = 8.049 m/s^2 \approx 8.05 m/s2

Therefore the correct answer is C.

7 0
2 years ago
A square conducting loop 8.4 cm on a side is placed in a uniform B-field so that the plane of the loop is perpendicular to the d
arsen [322]

Answer:

Explanation:

area of square loop A = side²

= 8.4² x 10⁻⁴

A = 70.56 x 10⁻⁴ m²

when it is converted into rectangle , length = 14.7  , width = 2.1

area = length x width

= 14.7 x 2.1 x 10⁻⁴

= 30.87 x 10⁻⁴ m²

Let magnetic field be B

Change in flux = magnetic field x change in area

= B x ( 70.56 x 10⁻⁴ - 30.87 x 10⁻⁴ )

= 39.69 x 10⁻⁴ B

rate of change of flux = change in flux / time taken

= 39.69 x 10⁻⁴ B  / 6.5 x 10⁻³

= 6.1 x 10⁻¹ B

emf induced = 6.1 x 10⁻¹ B

6.1 x 10⁻¹ B  = 14.7 ( given )

B = 2.41 x 10

= 24.1 T

B ) magnetic flux is decreasing , so it needs to be increased as per Lenz's law . Hence current induced will be anticlockwise so that additional  magnetic flux is induced out of the page.

4 0
2 years ago
8.4-1 Consider a magnetic field probe consisting of a flat circular loop of wire with radius 10 cm. The probe’s terminals corres
Vlad1618 [11]

Answer:

B_o = 1.013μT

Explanation:

To find B_o you take into account the formula for the emf:

\epsilon=-\frac{d\Phi_b}{dt}=-\frac{dBAcos\theta}{dt}=-Acos\theta\frac{dB}{dt}

where you used that A (area of the loop) is constant, an also the angle between the direction of B and the normal to A.

By applying the derivative you obtain:

\epsilon=-Acos\theta (2\pi f) B_ocos(2\pi f t+ \alpha)

when the emf is maximum the angle between B and the normal to A is zero, that is, cosθ = 1 or -1. Furthermore the cos function is 1 or -1. Hence:

\epsilon=2\pi fAB_o=2\pi (100*10^3Hz)(\pi (0.1m)^2)B_o=19739.20Hzm^2B_o\\\\B_o=\frac{20*10^{-3}V}{19739.20Hzm^2}=1.013*10^{-6}T=1.013\mu T

hence, B_o = 1.013μT

6 0
2 years ago
When the wind kicks up dust and sand, the dust grains are charged. The small grains tend to get a negative charge, and the large
diamong [38]

Answer:

Explanation:

Small grains are negatively charged by the wind while big grains is positively charged and remains at the ground . This process creates an electric field due to the presence of oppositely charged particles.

When ever electric field exists it is directed from a positive charge to a negative charge so the here electric field is towards an upwards direction.                  

4 0
2 years ago
Other questions:
  • What volume in milliliters will 0.00922 g of h2 gas occupy at stp?
    12·1 answer
  • A car is traveling at 20 meters/second and is brought to rest by applying brakes over a period of 4 seconds. What is its average
    13·2 answers
  • At the instant that the velocity of the crate is v⃗ =(3.40m/s)ι^+(2.20m/s)j^, what is the instantaneous power supplied by this f
    7·1 answer
  • A person weighing 0.70 kn rides in an elevator that has an upward acceleration of 1.5 m/s2. what is the magnitude of the normal
    11·1 answer
  • Suppose you sketch a model of an atom using the ones here as a guide. How would you build a model that is ionized? How would you
    15·1 answer
  • A passenger railroad car has a total of 8 wheels. Springs on each wheel compress--slightly--when the car is loaded. Ratings for
    12·1 answer
  • Suppose you want to make a scale model of a hydrogen atom. You choose, for the nucleus, a small ball bearing with a radius of 1.
    7·1 answer
  • In very cold weather, a significant mechanism for heat loss by the human body is energy expended in warming the air taken into t
    11·1 answer
  • In the sport of curling, large smooth stones are slid across an ice court to land on a target. Sometimes the stones need to move
    12·1 answer
  • 3. What conclusion can you make about the electric field strength between two parallel plates? Explain your answer referencing P
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!