Answer:
Explanation:
Please check the below file for the attached file
Answer:
Condition to break: ![H[j] \geq max {H[2j] , H[2j+1]}](https://tex.z-dn.net/?f=H%5Bj%5D%20%5Cgeq%20max%20%7BH%5B2j%5D%20%2C%20H%5B2j%2B1%5D%7D)
Efficiency: O(n).
Explanation:
Previous concepts
Heap algorithm is used to create all the possible permutations with K possible objects. Was created by B. R Heap in 1963.
Parental dominance condition represent a condition that is satisfied when the parent element is greater than his children.
Solution to the problem
We assume that we have an array H of size n for the algorithm.
It's important on this case analyze the parental dominance condition in order to the algorithm can work and construc a heap.
For this case we can set a counter j =1,2,... [n/2] (We just check until n/2 since in order to create a heap we need to satisfy minimum n/2 possible comparisions![and we need to check this:Break condition: [tex]H[j] \geq max {H[2j] , H[2j+1]}](https://tex.z-dn.net/?f=%20and%20we%20need%20to%20check%20this%3A%3C%2Fp%3E%3Cp%3E%3Cstrong%3EBreak%20condition%3A%20%3C%2Fstrong%3E%5Btex%5DH%5Bj%5D%20%5Cgeq%20max%20%7BH%5B2j%5D%20%2C%20H%5B2j%2B1%5D%7D)
And we just need to check on the array the last condition and if is not satisfied for any value of the counter j we need to stop the algorithm and the array would not a heap. Otherwise if we satisfy the condition for each
then we will have a heap.
On this case this algorithm needs to compare 2*(n/2) times the values and the efficiency is given by O(n).
Answer: 0.021818m =2.18x10^-²m
Explanation: Using Laplace principle
Design pressure is =12 bar= 1200000N/m²
T = Wall thickness
Design stress=110Mn/m²= 110,000,000N/m²
Radius= diameter/2 =4/2=2m
Design stress=Hoop stress =Pr/t where p=internal pressure or internal pressure, r=radius and t= wall thickness.
As Laplace equation stated.
110,000,000= 1,2000,00 x 2/t
t= 2,400,000/110,000,000.
t= 0.021818m
t=2.18x10^-2m.
Answer:
The correct option is;
A) Steel becomes too hot in the Sun and can burn the children
Explanation:
The properties of steel includes;
Low specific heat capacity, high thermal and electrical toughness, high hardness, high tensile strength, high yield strength, appreciable elongation, high fatigue strength, can easily corrode, high malleability and ability to creep
Therefore, due to the low specific heat capacity, which is 0.511 J/(g·°C) and high conductivity of steel which is about 32 W/(m·k), the temperature of the steel can rapidly rise and the hot steel surface can readily conduct the heat, (due to the temperature difference) to other bodies that come in contact