answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AURORKA [14]
2 years ago
8

Suppose that only 20% of all drivers come to a complete stop at an intersection having flashing red lights in all directions whe

n no other cars are visible. What is the probability that, of 20 randomly chosen drivers coming to an intersection under these conditions, a. at most 6 will come to a complete stop?b. Exactly 6 will come to a complete stop?
c. At least 6 will come to a complete stop?
d. How many of the next 20 drivers do you expect to come to a complete stop?
Mathematics
1 answer:
Lina20 [59]2 years ago
4 0

Answer:

a) 91.33% probability that at most 6 will come to a complete stop

b) 10.91% probability that exactly 6 will come to a complete stop.

c) 19.58% probability that at least 6 will come to a complete stop

d) 4 of the next 20 drivers do you expect to come to a complete stop

Step-by-step explanation:

For each driver, there are only two possible outcomes. Either they will come to a complete stop, or they will not. The probability of a driver coming to a complete stop is independent of other drivers. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

In which C_{n,x} is the number of different combinations of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

And p is the probability of X happening.

20% of all drivers come to a complete stop at an intersection having flashing red lights in all directions when no other cars are visible.

This means that p = 0.2

20 drivers

This means that n = 20

a. at most 6 will come to a complete stop?

P(X \leq 6) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)

In which

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 0) = C_{20,0}.(0.2)^{0}.(0.8)^{20} = 0.0115

P(X = 1) = C_{20,1}.(0.2)^{1}.(0.8)^{19} = 0.0576

P(X = 2) = C_{20,2}.(0.2)^{2}.(0.8)^{18} = 0.1369

P(X = 3) = C_{20,3}.(0.2)^{3}.(0.8)^{17} = 0.2054

P(X = 4) = C_{20,4}.(0.2)^{4}.(0.8)^{16} = 0.2182

P(X = 5) = C_{20,5}.(0.2)^{5}.(0.8)^{15} = 0.1746

P(X = 6) = C_{20,6}.(0.2)^{6}.(0.8)^{14} = 0.1091

P(X \leq 6) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) = 0.0115 + 0.0576 + 0.1369 + 0.2054 + 0.2182 + 0.1746 + 0.1091 = 0.9133

91.33% probability that at most 6 will come to a complete stop

b. Exactly 6 will come to a complete stop?

P(X = 6) = C_{20,6}.(0.2)^{6}.(0.8)^{14} = 0.1091

10.91% probability that exactly 6 will come to a complete stop.

c. At least 6 will come to a complete stop?

Either less than 6 will come to a complete stop, or at least 6 will. The sum of the probabilities of these events is decimal 1. So

P(X < 6) + P(X \geq 6) = 1

We want P(X \geq 6). So

P(X \geq 6) = 1 - P(X < 6)

In which

P(X < 6) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) = 0.0115 + 0.0576 + 0.1369 + 0.2054 + 0.2182 + 0.1746 = 0.8042

P(X \geq 6) = 1 - P(X < 6) = 1 - 0.8042 = 0.1958

19.58% probability that at least 6 will come to a complete stop

d. How many of the next 20 drivers do you expect to come to a complete stop?

The expected value of the binomial distribution is

E(X) = np = 20*0.2 = 4

4 of the next 20 drivers do you expect to come to a complete stop

You might be interested in
Two solutions of different concentrations of acid are mixed creating 40 mL of a solution that is 32% acid. One-quarter of the so
Georgia [21]
In order to construct this equation, we will use the variables:
V to represent mixture volume (40 ml)
C to represent mixture concentration (0.32)
v₁ to represent volume of first solution (40 / 4 = 10 ml)
c₁ to represent concentration of first solution (0.2)
v₂ to represent the volume of the second solution (40 * 3/4 = 30 ml)
c₂ to represent the concentration of the second solution 


We know that the total amount of substance, product of the volume and concentration, in the final solution is equal to the individual amounts in the two given solutions. Thus:
VC = v₁c₁ +  v₂c₂
40(0.32) = 10(0.2) + 30c
6 0
2 years ago
Read 2 more answers
Consider this equation: -2x - 4 + 5x = 8 Generate a plan to solve for the cariable. Describe the steps that will be used.
nordsb [41]
We are given the function –2x – 4 + 5x = 8 and is asked in the problem to solve for the variable x in the function. In this case, we can first group the like terms and put them in their corresponding sides:

-2x + 5x =8+4
Then, do the necessary operations.

3x = 12
x = 4.
The variable x has a value of 4.
8 0
1 year ago
Which of the following is an equivalent form of the compound inequality −33 &gt; −3x − 6 ≥ −6?
wolverine [178]

<u>ANSWER</u>

9\:   < x  \leqslant0

<u>EXPLANATION</u>

The given compound inequality is

- 33 \:  >  - 3x - 6 \geqslant  - 6

We need to simplify this inequality so that we can obtain x standing alone between the inequality signs.

We add 6 through out the inequality.

- 33  + 6\:  >  - 3x - 6 + 6 \geqslant  - 6 + 6

This simplifies to:

- 27\:  >  - 3x \geqslant  0

We now divide through by -3 and reverse the inequality sign.

\frac{- 27}{ - 3} \:   <   \frac{ - 3x}{ - 3}   \leqslant    \frac{0}{ - 3}

We now simplify to get:

9\:   < x  \leqslant    0

6 0
2 years ago
PLEASE HELP!!! ASAP The function graphed approximates the height of a rock, in meters, x seconds after it falls from a cliff
nasty-shy [4]

The vertical numbers are the distance and the horizontal numbers are the time in seconds.

Look at where the line is located at the number 20.

It si between the 2 and the 3 on the horizontal line, but you can see it is closer to the 2 than it is the 3, so the time would be 2.2s

8 0
2 years ago
Read 2 more answers
If 1m = 3.3ft, how many cubic feet is the Kuroshio Sea Tank? Show your calculations!
Daniel [21]
The kuroshio sea tank is 115.5 ft
6 0
2 years ago
Other questions:
  • Line s is the perpendicular bisector of JK. If line s intersects JK at point L, which of the following statements must be true?
    6·2 answers
  • Elise has budgeted $800 in her checking account to spend during the summer for entertainment. She would like to have at least $2
    9·2 answers
  • Bonita is testing prototype model rocket engines. To be considered a successful launch, the rocket must reach a height of at lea
    5·1 answer
  • Three married couples have purchased theater tickets and are seated in a row consisting of just six seats. If they take their se
    14·1 answer
  • If the probabilities that an automobile mechanic will service 3, 4, 5, 6, 7, or 8 or more cars on any given workday are, respect
    12·1 answer
  • The regular price of a scooter is $65.50. It is on sale for $52.40. What is the percent decrease from the regular price to the s
    9·1 answer
  • Identify the equivalent expressions of 4(2x + x-3) - 3x + 3 by substituting x = 2 and x = 3.
    11·2 answers
  • An empty can weighs 30 grams. The weight of the same can filled with liquid is 47.3 grams. Which equation could be used to find
    13·1 answer
  • Penny charges $5 per hour for babysitting, plus a flat fee of $12 for her travel expenses. Charlene charges $3 per hour for baby
    13·1 answer
  • Company A charges $3.25 per spirit banner. The equation C=2.45x represents the cost in dollars, C, for x spirit banners at Compa
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!