Answer:
<em>0.45 mm</em>
Explanation:
The complete question is
a certain fuse "blows" if the current in it exceeds 1.0 A, at which instant the fuse melts with a current density of 620 A/ cm^2. What is the diameter of the wire in the fuse?
A) 0.45 mm
B) 0.63 mm
C.) 0.68 mm
D) 0.91 mm
Current in the fuse is 1.0 A
Current density of the fuse when it melts is 620 A/cm^2
Area of the wire in the fuse = I/ρ
Where I is the current through the fuse
ρ is the current density of the fuse
Area = 1/620 = 1.613 x 10^-3 cm^2
We know that 10000 cm^2 = 1 m^2, therefore,
1.613 x 10^-3 cm^2 = 1.613 x 10^-7 m^2
Recall that this area of this wire is gotten as
A = 
where d is the diameter of the wire
1.613 x 10^-7 = 
6.448 x 10^-7 = 3.142 x 
=
d = 4.5 x 10^-4 m = <em>0.45 mm</em>
Answer:
(b) 10 Wb
Explanation:
Given;
angle of inclination of magnetic field, θ = 30°
initial area of the plane, A₁ = 1 m²
initial magnetic flux through the plane, Φ₁ = 5.0 Wb
Magnetic flux is given as;
Φ = BACosθ
where;
B is the strength of magnetic field
A is the area of the plane
θ is the angle of inclination
Φ₁ = BA₁Cosθ
5 = B(1 x cos30)
B = 5/(cos30)
B = 5.7735 T
Now calculate the magnetic flux through a 2.0 m² portion of the same plane
Φ₂ = BA₂Cosθ
Φ₂ = 5.7735 x 2 x cos30
Φ₂ = 10 Wb
Therefore, the magnetic flux through a 2.0 m² portion of the same plane is is 10 Wb.
Option "b"
Answer:
83%
Explanation:
On the surface, the weight is:
W = GMm / R²
where G is the gravitational constant, M is the mass of the Earth, m is the mass of the shuttle, and R is the radius of the Earth.
In orbit, the weight is:
w = GMm / (R+h)²
where h is the height of the shuttle above the surface of the Earth.
The ratio is:
w/W = R² / (R+h)²
w/W = (R / (R+h))²
Given that R = 6.4×10⁶ m and h = 6.3×10⁵ m:
w/W = (6.4×10⁶ / 7.03×10⁶)²
w/W = 0.83
The shuttle in orbit retains 83% of its weight on Earth.
Answer;
= 0.0965 g
Explanation;
Mass is given by multiplying density by volume
Mass = density * volume
Mass = 19.3 g/cm³×0.005 cm³
Mass = 0.0965 g
Answer:
yes, the potential difference across the terminals of the battery can be equal to its emf.
Explanation:
when the current in the battery is zero, meaning the current though, and hence the potential drop across the internal resistance is zero. This only happens when there is no load placed on the battery.