Answer:
The wavelength of the incident light is
400 nm
Explanation:
Given data
Distance between the sits

d = 1.5 ×
m
°
m = 2
We know that the wavelength of the incident light is given by

Put all the value in above formula we get
×
4 ×
m
400 nm
Therefore the wavelength of the incident light is
400 nm
Answer:
ULTIMATE CORRECT ANSWER
collaboration and communication
Explanation:
The heat required to convert the unknown substance X from one phase to another is 1600 J times the specific heat of that substance.
Explanation:
The heat energy required to convert a substance or to heat up or increase the temperature of a substance can be obtained from the specific heat formula.
As per this formula, the heat energy applied should be equal to the product of mass of the substance with temperature gradient and also with specific heat of the substance. Basically, the heat provided to increase or convert a substance should be more than the specific heat of the substance.

Since, here the mass of the substance X is given as m = 20g and the temperature change is given from -10°C to 70°C.
Then ΔT = (70-(-10))=70+10=80°C.
As the substance is unknown, the specific heat of that substance can also not be determined. Hence keep it as C.

Q = 1600C J
Thus, the heat required to convert the unknown substance X from one phase to another is 1600 J times the specific heat of that substance.
Answer:

Explanation:
The intensity of a star noticed at a certain distance is inversely proportional to the square of distance. Then:

The intensity of the Sun in Jupiter relative to Earth is:



Answer:
wavelength = speed/frequency
Explanation:
Required
Determine which of the options can be used to calculate frequency
The relationship between wavelength, speed and frequency is as follows;
---- Equation 1
When option (1), (2) and (4) are rearranged, they do not result in the above formula; only option (3) does
Checking option (3)

Multiply both sides by Frequency


Divide both sides by Wave Length

--- Equation 2
<em>Comparing equation 1 and 2; both equations are the same.</em>
<em>Hence, option (3) answers the question</em>