Answer:
option D.
Explanation:
The correct answer is option D.
When an object is in equilibrium torque calculated at any point will be equal to zero.
An object is said to be in equilibrium net moment acting on the body should be equal to zero.
If the net moment on the object is not equal to zero then the object will rotate it will not be stable.
Answer:
The acceleration of the cart is 1.0 m\s^2 in the negative direction.
Explanation:
Using the equation of motion:
Vf^2 = Vi^2 + 2*a*x
2*a*x = Vf^2 - Vi^2
a = (Vf^2 - Vi^2)/ 2*x
Where Vf is the final velocity of the cart, Vi is the initial velocity of the cart, a the acceleration of the cart and x the displacement of the cart.
Let x = Xf -Xi
Where Xf is the final position of the cart and Xi the initial position of the cart.
x = 12.5 - 0
x = 12.5
The cart comes to a stop before changing direction
Vf = 0 m/s
a = (0^2 - 5^2)/ 2*12.5
a = - 1 m/s^2
The cart is decelerating
Therefore the acceleration of the cart is 1.0 m\s^2 in the negative direction.
Answer:
The answer to your question is Decrease
Answer:
Option D (Alphonse Bertillon) is the correct response.
Explanation:
- He seems to have been a policeman turned biometrics expert from France. Forensic techniques such as forensic record analysis were developed by Bertillon.
- To retain proof, he always pioneered or developed the use of such galvanoplastic compounds as molds for footsteps as well as ballistics. To research physical changes with age, Bertillon has developed a method focused on images of almost the same person’s performance.
All those other choices weren’t connected to the instance offered. So, the best one is the one described.
The ball will bounce at a height lower than the height it was dropped.
Answer: Option B.
<u>Explanation:</u>
When a basket ball is thrown from a particular height, it bounces back. But the height it bounces back at is not exactly the same height from where it was thrown.
With further bounces, the energy of the basket ball goes on decreasing and the bounces go on getting smaller. This shows that there is a change in the energy of the basket ball with every bounce that the ball makes. Some energy lost from the ball gets absorbed by the court and some of the energy is changed into thermal energy.