Answer:
kJ/mol
Explanation:
= initial vapor pressure = 45.77 mm Hg
= final vapor pressure = 193.1 mm Hg
= initial temperature = 213.1 K
= final temperature = 243.7 K
= Heat of vaporization
Using the equation


J/mol
kJ/mol
Answer:B. two larger, less stable nuclei
Explanation: They collied and don't combine
PART A)
Equivalent resistance in parallel is given as

now we have


PART B)
since potential difference across all resistance will remain same as all are in parallel
so here we can use ohm's law

for 4 ohm resistance we have


PART C)
since potential difference across all resistance will remain same as all are in parallel
so here we can use ohm's law

for 8 ohm resistance we have


EC_1 + EP_1 = EC2 + EP_2
EC_2 = 0
EC_2 = EP_1 - EP_2
EC_2 = mg(H_1 - H_2) = 0.20 kg * 9.8 m/s^2 * (3.25 m - 1.5m) = 3.43 J
Answer:
The distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>
Explanation:
As it is given that the Neptune's orbit is circular, the formula that we have to use is the circumference of a circle in order to find the distance it travels in a single orbit around the Sun. In other words, you can say that the circumference of the circle is <em>equivalent</em> to the distance it travels around the Sun in a single orbit.
<em>The circumference of the circle = Distance Travelled (in a single orbit) = 2*π*R ---- (A)</em>
Where,
<em>R = Orbital radius (in this case) = 30.1 AU</em>
<em />
Plug the value of R in the equation (A):
<em>(A) => The circumference of the circle = 2*π*(30.1)</em>
<em> The circumference of the circle = </em><em>60.2π</em>
Therefore, the distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>