Given:

To find:
The highest and lowest scores Sam could have made in the tournament.
Solution:
We have,


It can be written as

Add 288 on both sides.

and 
and 
Therefore, the highest and lowest scores Sam could have made in the tournament are 290 and 286 respectively.
Answer:
The maximum profit can be attained when 4 bikes are produced each day.
Step-by-step explanation:
Look at the attached picture:
In the table given in the picture, the number of bikes produces varies. We cannot properly compare the profits per day. To be consistent, let us determine the profit per unit of bike produced.The relationship between cost, revenue and profit can be as:
Profit = Revenue - Cost
To find the profit per unit of bike, simply divide the profit with the number of bikes produced (1st column). After you see the results, we can see that the highest profit is $17.5 per unit of bike produced. Therefore, the maximum profit can be attained when 4 bikes are produced each day.
we have

Factor the leading coefficient

Complete the square. Remember to balance the equation by adding the same constants to each side


Divide both sides by 

Rewrite as perfect squares

Taking the square roots of both sides (square root property of equality)

Remember that





<u>the answer is</u>
The solutions are


Let
X-----------------> number of pansies
y-----------------> number of trees
we know that
x=15*8----------> x=120 pansies
y=8 trees
cost of each trees is----------> $<span>20.75
</span>cost of each pansies is------> $2.50/6------> $5/12
[<span>expression to find Katherine’s final cost]=[cost trees]+[cost pansies]
</span>[cost trees]=y*$20.75
[cost pansies]=x*($5/12)
[expression to find Katherine’s final cost]=y*($20.75)+x*($5/12)
[expression to find Katherine’s final cost]=8*($20.75)+120*($5/12)
[expression to find Katherine’s final cost]=$166+$50
[expression to find Katherine’s final cost]=$216
the answer is
[expression to find Katherine’s final cost]=y*($20.75)+x*($5/12)
[expression to find Katherine’s final cost]=8*($20.75)+120*($5/12)
Katherine’s final cost is $216