answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
polet [3.4K]
2 years ago
15

The city is thinking about starting a program to add a new chemical to the public pool. Before they do, they want to find out if

there are any health risks associated with this type of chemical. Which group would be the best to advise them on this topic?
a group of concerned citizens who oppose the program
the company that manufactures the chemical
the local pest pool companies who would be hired to take care of the pool
the government agency that regulates these types of chemicals
Physics
1 answer:
Kitty [74]2 years ago
4 0
The best and most correct answer among the choices provided by the question is the fourth choice.


The best people for advising is <span>the government agency that regulates these types of chemicals.</span>
I hope my answer has come to your help. God bless and have a nice day ahead!
You might be interested in
Have you ever chewed on a wintergreen mint in front of a mirror in the dark? If you have, you may have noticed some sparks of li
lutik1710 [3]

Answer:

Part a)

E = 3.66 eV

Part b)

\lambda = 508.5 nm

Explanation:

Part a)

change in the energy due to decay of photon is given as

E = h\nu

here we know that

\nu = 8.88 \times 10^{14} Hz

now we have

E = (6.6 \times 10^{-34})(8.88 \times 10^{14})

E = 5.86 \times 10^{-19} J

E = 3.66 eV

Part b)

While electron return to its ground state it will emit a photon of energy 2/3rd of the total energy

so we have

\Delta E = \frac{2}{3}(3.66 eV)

\Delta E = 2.44 eV

now to find the wavelength we have

\Delta E = \frac{hc}{\lambda}

2.44 = \frac{1242}{\lambda}

\lambda = 508.5 nm

3 0
2 years ago
A heat engine accepts 200,000 Btu of heat from a source at 1500 R and rejects 100,000 Btu of heat to a sink at 600 R. Calculate
diamong [38]

To solve the problem it is necessary to apply the concepts related to the conservation of energy through the heat transferred and the work done, as well as through the calculation of entropy due to heat and temperatra.

By definition we know that the change in entropy is given by

\Delta S = \frac{Q}{T}

Where,

Q = Heat transfer

T = Temperature

On the other hand we know that by conserving energy the work done in a system is equal to the change in heat transferred, that is

W = Q_{source}-Q_{sink}

According to the data given we have to,

Q_{source} = 200000Btu

T_{source} = 1500R

Q_{sink} = 100000Btu

T_{sink} = 600R

PART A) The total change in entropy, would be given by the changes that exist in the source and sink, that is

\Delta S_{sink} = \frac{Q_{sink}}{T_{sink}}

\Delta S_{sink} = \frac{100000}{600}

\Delta S_{sink} = 166.67Btu/R

On the other hand,

\Delta S_{source} = \frac{Q_{source}}{T_{source}}

\Delta S_{source} = \frac{-200000}{1500}

\Delta S_{source} = -133.33Btu/R

The total change of entropy would be,

S = \Delta S_{source}+\Delta S_{sink}

S = -133.33+166.67

S = 33.34Btu/R

Since S\neq   0 the heat engine is not reversible.

PART B)

Work done by heat engine is given by

W=Q_{source}-Q_{sink}

W = 200000-100000

W = 100000 Btu

Therefore the work in the system is 100000Btu

4 0
2 years ago
You set a tuning fork into vibration at a frequency of 723 Hz and then drop it off the roof of the Physics building where the ac
zaharov [31]

Answer:

Explanation:

Given

Original Frequency f=723\ Hz

apparent Frequency f'=697\ Hz

There is change in frequency whenever source move relative to the observer.

From Doppler effect we can write as

f'=f\cdot \frac{v-v_o}{v+v_s}

where  

f'=apparent frequency  

v=velocity of sound in the given media

v_s=velocity of source

v_0=velocity of observer  

here v_0=0

697=723\cdot (\frac{343-0}{343+v_s})

v_s=(\frac{f}{f'}-1)v

v_s=(\frac{723}{697}-1)\cdot 343

v_s=12.79\approx 12.8\ m/s

i.e.fork acquired a velocity of 12.8 m/s

distance traveled by fork is given by

v^2-u^2=2as

where v=final velocity

u=initial velocity

a=acceleration

s=displacement

v_s^2-0=2\times 9.8\times s

s=\frac{12.8^2}{2\times 9.8}

s=8.35\ m

                                       

5 0
2 years ago
A swimming pool contains x (less than 0.02) grams of chlorine per cubic meter. the pool measures 5 meters by 50 meters and is 2
zubka84 [21]
The solution for this problem would be:(10 - 500x) / (5 - x) 
so start by doing: 
x(5*50*2) - xV + 5V = 0.02(5*50*2) 
500x - xV + 5V = 10 
V(5 - x) = 10 - 500x 
V = (10 - 500x) / (5 - x) 
(V stands for the volume, but leaves us with the expression for x)
3 0
2 years ago
Experiments using "optical tweezers" measure the elasticity of individual DNA molecules. For small enough changes in length, the
GalinKa [24]

Answer:

Spring constant, k = 0.3 N/m

Explanation:

It is given that,

Force acting on DNA molecule, F=1.5\ nN=1.5\times 10^{-9}\ N

The molecule got stretched by 5 nm, x=5\times 10^{-9}\ m

Let k is the spring constant of that DNA molecule. It can be calculated using the Hooke's law. It says that the force acting on the spring is directly proportional to the distance as :

F=-kx

k=\dfrac{F}{x}

k=\dfrac{1.5\times 10^{-9}\ N}{5\times 10^{-9}\ m}

k = 0.3 N/m

So, the spring constant of the DNA molecule is 0.3 N/m. Hence, this is the required solution.

8 0
2 years ago
Other questions:
  • In a harbor, you can see sea waves traveling around the edges of small stationary boats. Why does this happen?
    7·1 answer
  • a force of 25.0 newtons is applied so as to move a 5.0 kg mass a distance of 20.0 meters. How much work was done? with work plea
    6·1 answer
  • The potential energy of a pair of hydrogen atoms separated by a large distance x is given by u(x)=−c6/x6, where c6 is a positive
    7·2 answers
  • If the net force acting on an object increases by 50 percent, then the acceleration of the object will
    11·1 answer
  •  If the gauge pressure of a gas is 114 kPa, what is the absolute pressure?
    13·2 answers
  • The air surrounding an airplane in flight exerts a drag force that acts opposite to the airplane's motion. When an Airbus A380 i
    13·1 answer
  • Calculate the minimum average power output necessary for a person to run up a 12.0 m long hillside, which is inclined at 25.0° a
    14·1 answer
  • Water exits a garden hose at a speed of 1.2 m/s. If the end of the garden hose is 1.5 cm in diameter and you want to make the wa
    9·1 answer
  • A dog of mass 10 kg sits on a skateboard of mass 2 kg that is initially traveling south at 2 m/s. The dog jumps off with a veloc
    9·1 answer
  • Which change will cause the gravitational force between a baseball and a soccer ball to increase?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!