answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
malfutka [58]
2 years ago
7

First find ∮RB⃗ ⋅dl⃗ , the line integral of B⃗ around a loop of radius R located just outside the left capacitor plate. This can

be found from the usual current due to moving charge in Ampère's law, that is, without the displacement current. Find an expression for this integral involving the current I(t) and any needed constants given in the introduction.
Physics
1 answer:
Allisa [31]2 years ago
5 0

Answer:

the expression of current in the loop enclosed to the left of the capacitor plate is

I(t) = \frac{1}{\mu_0}\int B. dL

Explanation:

As we know by Ampere's law that line integral of magnetic field around a closed loop is proportional to the current enclosed in the path

So we will have

\int B. dL = \mu_0 I(t)

so we have

I(t) = \frac{1}{\mu_0}\int B. dL

so above is the expression of current in the loop enclosed to the left of the capacitor plate

You might be interested in
There have been several proposed atomic models during the last 150 years. Which model best illustrates the Bohr model. This mode
Eva8 [605]
<span>Despite the Quantum Mechanical Model treating the electron mathematically as a wave rather than fixed patterns, the Quantum Mechanical model best illustrates the Bohr model because both models of the atom assign specific energies to an electron.</span>
3 0
2 years ago
Read 2 more answers
When the mass of the bottle is 0.125 kg, the KE is______ kg m2/s2.
tensa zangetsu [6.8K]
Answers are:
(1) KE = 1 kg m^2/s^2
(2) KE = 2 kg m^2/s^2
(3) KE = 3 kg m^2/s^2
(4) KE = 4 kg m^2/s^2


Explanation:

(1) Given mass = 0.125 kg
speed = 4 m/s

Since Kinetic energy = (1/2)*m*(v^2)

Plug in the values:
Hence:
KE = (1/2) * 0.125 * (16)
KE = 1 kg m^2/s^2

(2) Given mass = 0.250 kg
speed = 4 m/s

Since Kinetic energy = (1/2)*m*(v^2)

Plug in the values:
Hence:
KE = (1/2) * 0.250 * (16)
KE = 2 kg m^2/s^2

(3) Given mass = 0.375 kg
speed = 4 m/s

Since Kinetic energy = (1/2)*m*(v^2)

Plug in the values:
Hence:
KE = (1/2) * 0.375 * (16)
KE = 3 kg m^2/s^2

(4) Given mass = 0.500 kg
speed = 4 m/s

Since Kinetic energy = (1/2)*m*(v^2)

Plug in the values:
Hence:
KE = (1/2) * 0.5 * (16)
KE = 4 kg m^2/s^2
5 0
2 years ago
The peregrine falcon is the world's fastest known bird and has been clocked diving downward toward its prey at constant vertical
Sergio [31]
100m / 97.2m/s = 1.0288 seconds
7 0
2 years ago
Read 2 more answers
Dennis throws a volleyball up in the air. It reaches its maximum height 1.1\, \text s1.1s1, point, 1, start text, s, end text la
rewona [7]

Answer:

If max height = 1.1 meters, then initial velocity is 3.28 m/s

If max height is 1.1 feet, then the initial velocity is 5.93  ft/s

Explanation:

Recall the formulas for vertical motion under the acceleration of gravity;

for the vertical velocity of the object we have

v=v_0-g \,t

for the object's vertical displacement we have

y-y_0=v_0\,t - \frac{g}{2} \,t^2

If the maximum height reached by the object is given in meters, we use the value for g in m/s^2 which is: 9.8\,\,m/s^2

If the maximum height of the object is given in feet, we use the value for g in  ft/s^2  which is : 32\,\,ft/s^2

Now, when the ball reaches its maximum height, the ball's velocity is zero, so that allows us to solve for the time (t) the process of reaching the max height takes:

v=v_0-g \,t\\0=v_0-g \,t\\g\,\,t=v_0\\t=\frac{v_0}{g}

and now we use this to express the maximum height in the second equation we typed:

y-y_0=v_0\,t - \frac{g}{2} \,t^2\\max\,height=v_0\,(\frac{v_0}{g})  - \frac{g}{2} \,(\frac{v_0}{g})^2\\max\,height= \frac{v_0^2}{2\,g}

Then if the max height is 1.1 meters, we use the following formula to solve for v_0:

1.1= \frac{v_0^2}{2\,9.8}\\(9.8)\,(1.1)=v_0^2\\v_0=10.78\\v_0=\sqrt{10.78} \\v_0=3.28\,\,m/s

If the max height is 1.1 feet, we use the following formula to solve for v_0:

1.1= \frac{v_0^2}{2\,32}\\(32)\,(1.1)=v_0^2\\v_0=35.2\\v_0=\sqrt{35.2} \\v_0=5.93\,\,ft/s

5 0
2 years ago
Read 2 more answers
Gibbons, small Asian apes, move by brachiation, swinging below a handhold to move forward to thenext handhold. A 9.3kggibbon has
Mumz [18]

Upward force provided by the branch is 260 N

<u>Explanation:</u>

Given -

Mass of Gibbon, m = 9.3 kg

Length of the branch, r = 0.6 m

Speed of the movement, v = 3.3 m/s

Upward force, T = ?

The tension force in the rod must be greater than the weight at the bottom of the swing in order to provide an upward centripetal acceleration.

Therefore,

F net = T - mg

F net = ma = mv²/r

Thus,

T = mv²/r + mg

T = m ( v²/r + g)

T = 9.3 [ ( 3.3)² / 0.6 + 9.8]

T = 259.9 N ≈ 260 N

Therefore, upward force provided by the branch is 260 N

5 0
2 years ago
Other questions:
  • Water is a colorless and odorless liquid. It can exist in solid, liquid, and gas states. It boils at 100 degrees C and melts at
    13·1 answer
  • The weight of a 630 g piece of ham is _____.
    9·1 answer
  • If a rock is thrown upward on the planet mars with a velocity of 14 m/s, its height (in meters) after t seconds is given by h =
    8·1 answer
  • A rock is rolling down a hill. At position 1, it’s velocity is 2.0 m/s. Twelve seconds later, as it passes position 2, it’s velo
    9·1 answer
  • A long-distance swimmer is able to swim through still water at 4.0 km/h. She wishes to try to swim from Port Angeles, Washington
    5·1 answer
  • Workers do 8000 J of work on a 2000-N crate to push it up a ramp. If the ramp is 2 m high, what is the efficiency of the ramp?
    9·2 answers
  • Calculate the weight of a 4.5 kg rabbit.
    14·1 answer
  • 8. The resistance of a bagel toaster is 14 Ω. To prepare a bagel, the toaster is operated for one minute from a 120-V outlet. Ho
    9·2 answers
  • Now that we have a feel for the state of the circuit in its steady state, let us obtain the expression for the current in the ci
    15·1 answer
  • Chris and Jamie are carrying Wayne on a horizontal stretcher. The uniform stretcher is 2.00 m long and weighs 100 N. Wayne weigh
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!