answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivahew [28]
2 years ago
9

g Problem 4. A 2000 kg railway freight car coasts at 4.4 m/s underneath a grain terminal, which dumps grain directly down into t

he freight car. If the speed of the loaded freight car must not go below 3.0 m/s, what is the maximum mass of grain that it can accept
Physics
1 answer:
pogonyaev2 years ago
5 0

Answer: 2933 kg

Explanation:

Given

From the law of conservation of linear momentum, we know that

m(i)v(i) = m(f)v(f), where there is no external force acting on the system

m(i) = initial mass of the freight car system

m(f) = maximum mass of the freight car system

v(i) = initial linear velocity of the system

v(f) = final linear velocity of the system

2000 * 4.4 = m(f) * 3

3m(f) = 8800

m(f) = 8800 / 3

m(f) = 2933.3 kg

Therefore the maximum mass of grain that it can accept is 2933 kg

You might be interested in
Gibbons, small Asian apes, move by brachiation, swinging below a handhold to move forward to the next handhold. A 9.4 kg gibbon
Katarina [22]

Answer:

upward force acting = 261.6 N

Explanation:

given,

mass of gibbon = 9.4 kg

arm length = 0.6 m

speed of the swing

net force must provide

F_{branch} + F_{gravity}=F_{centripetal}

force of gravity = - mg

F_{branch}=F_{centripetal}-F_{gravity}

                        = \dfrac{mv^2}{r} + mg

                        = m(\dfrac{3.4^2}{0.6} +9.8)

                        =9 x 29.067

                        = 261.6 N

upward force acting = 261.6 N

7 0
2 years ago
The maximum tension that a 0.80 m string can tolerate is 15 N. A 0.35-kg ball attached to this string is being whirled in a vert
zimovet [89]

Answer:

v=5.86 m/s

Explanation:

Given that,

Length of the string, l = 0.8 m

Maximum tension tolerated by the string, F = 15 N

Mass of the ball, m = 0.35 kg

We need to find the maximum speed the ball can have at the top of the circle. The ball is moving under the action of the centripetal force. The length of the string will be the radius of the circular path. The centripetal force is given by the relation as follows :

F=\dfrac{mv^2}{r}

v is the maximum speed

v=\sqrt{\dfrac{Fr}{m}} \\\\v=\sqrt{\dfrac{15\times 0.8}{0.35}} \\\\v=5.86\ m/s

Hence, the maximum speed of the ball is 5.86 m/s.

3 0
2 years ago
If you drive through water, your brakes may become slippery and ineffective. To dry the brakes off, __________.
GenaCL600 [577]

Answer:

I am not a driver, but I think it's C.

Explanation:

6 0
2 years ago
Read 2 more answers
A spring stores 10. joules of elastic potential
Mekhanik [1.2K]
The answer would be . Since we are looking for the spring constant you would need to use the formula
PEs =  \frac{1}{2} k {x}^{2}
. Then you'd substitute, for PEs and x.
10j=1/2k(.20m^2).
Then solve. k=500n/m
6 0
2 years ago
Read 2 more answers
A particle with a charge of -1.24 x 10"° C is moving with instantaneous velocity (4.19 X 104 m/s)î + (-3.85 X 104 m/s)j. What is
astra-53 [7]

Answer:

(a) F= 6.68*10¹¹⁴ N (-k)

(b) F =( 6.68*10¹¹⁴ i  + 7.27*10¹¹⁴ j  ) N

Explanation

To find the magnetic force in terms of a fixed amount of charge q that moves at a constant speed v in a uniform magnetic field B we apply the following formula:

F=q* v X B Formula (1 )

q: charge (C)

v: velocity (m/s)

B: magnetic field (T)

vXB : cross product between the velocity vector and the magnetic field vector

Data

q= -1.24 * 10¹¹⁰ C

v= (4.19 * 10⁴ m/s)î + (-3.85 * 10⁴m/s)j

B  =(1.40 T)i  

B  =(1.40 T)k

Problem development

a) vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)i =

            = - (-3.85*1.4) k = 5.39* 10⁴ m/s*T (k)

1T= 1 N/ C*m/s

We apply the formula (1)

  F= 1.24 * 10¹¹⁰ C*  5.39* 10⁴ m/s* N/ C*m/s (-k)

   F= 6.68*10¹¹⁴ N (-k)

a)  vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)k =

             =( - 5.39* 10⁴i - 5.87* 10⁴j)m/s*T

1T= 1 N/ C*m/s

We apply the formula (1)

F= 1.24 * 10¹¹⁰ C*  (  5.39* 10⁴i + 5.87* 10⁴j) m/s* N/ C*m/s

F =( 6.68*10¹¹⁴  i  + 7.27*10¹¹⁴  j  ) N

8 0
2 years ago
Other questions:
  • An object at rest is suddenly broken apart into two fragments by an explosion one fragment acquires twice the kinetic energy of
    14·1 answer
  • One object has twice as much mass as another object. The first object also has twice as much a velocity. b gravitational acceler
    14·1 answer
  • A geologist is studying the shore along a river. She finds a pile of rocks at the base of a riverbank. These broken rock pieces
    14·2 answers
  • An object is 6.0 cm in front of a converging lens with a focal length of 10 cm.Use ray tracing to determine the location of the
    9·1 answer
  • A bee wants to fly to a flower located due North of the hive on a windy day. The wind blows from East to West at speed 6.68 m/s.
    8·1 answer
  • Peregrine falcons are known for their maneuvering ability. In a tight circular turn, a falcon can attain a centripetal accelerat
    13·1 answer
  • A motion sensor is used to create the graph of a student’s horizontal velocity as a function of time as the student moves toward
    8·1 answer
  • Sheila (m=56.8 kg) is in her saucer sled moving at 12.6 m/s at the bottom of the sledding hill near Bluebird Lake. She approache
    11·1 answer
  • Solar wind particles can be captured by the Earth's magnetosphere. When these particles spiral down along the magnetic field int
    5·1 answer
  • (4%) Problem 10: The standard frequency of the musical pitch called "middle C" is 261.6 Hz. show answer No Attempt How fast, in
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!