Answer:
Concentration, because the amounts of reactants and products remain constant after equilibrium is reached.
Explanation:
The rate of reaction refers to the amount of reactants converted or products formed per unit time.
As the reaction progresses, reactions are converted into products. This continues until equilibrium is attained in a closed system.
When equilibrium is attained, the rate of forward reaction is equal to the rate of reverse reaction, hence the concentration of reactants and products in the system remain fairly constant over time.
When deducing the rate of reaction, concentration of the specie of interest is plotted on the y-axis against time on the x-axis.
Answer:
1.17 grams
Explanation:
Let's consider the balanced equation for the combustion of ethylene.
C₂H₄(g) + 3 O₂(g) → 2 CO₂(g) + 2 H₂O(l)
We can establish the following relations:
- 1411 kJ are released (-1411 kJ) when 1 mole of C₂H₄ burns.
- The molar mass of C₂H₄ is 28.05 g/mol.
The grams of C₂H₄ burned to give 59.0 kJ of heat (q = -59.0 kJ) is:

Answer:
We can seprate oil and water by the process of seprating funnel
<u>Answer:</u>
P2 = 778.05 mm Hg = 1.02 atm
<u>Explanation:</u>
We are to find the final pressure (expressed in atm) of a 3.05 liter system initially at 724 mm hg and 298 K which is compressed to a final volume of 2.60 liter at 273 K.
For this, we would use the equation:

where P1 = 724 mm hg
V1 = 3.05 L
T1 = 298 K
P2 = ?
V2 = 2.6 L
T2 = 173 K
Substituting the given values in the equation to get:

P2 = 778.05 mm Hg = 1.02 atm
Liquid + Solid = 8.89 mL
V ( Solid ) = 8.89 mL - 6.26 mL = 2.63 mL
The density of the solid = m / V = 10.283 g / 2.63 mL =
= 3.9 g/mL = 3.9 g / cm³