The oxidation numbers of nitrogen in NH3, HNO3, and NO2 are, respectively: -3, -5, +4 +3, +5, +4 -3, +5, -4 -3, +5, +4
Evgesh-ka [11]
In NH3 , let oxidation number of N be x
x + (+1)3 = 0
x = -3
In HNO3 , let oxidation number of N be x
1 + x + (-2)3 = 0
x = +5
In NO2 , let oxidation number of N be x
x + (-2)2 = 0
x = +4
Answer : The correct option is, 30 protons
Explanation :
Element = Zinc
Atomic number = 30
Atomic mass number = 65
As we know that the atomic number is equal to the number of electrons and number of protons.
Atomic number = Number of electrons = Number of protons = 30
Number of neutrons = Atomic mass - Number of protons = 65 - 30 = 35
Therefore, the number of protons an uncharged zinc atom have 30 protons.
Answer:
ΔH°c = -2219.9 kJ
Explanation:
Let's consider the combustion of propane.
C₃H₈(g) + 5 O₂(g) ⟶ 3 CO₂(g) + 4 H₂O(l)
We can find the standard enthalpy of the combustion (ΔH°c) using the following expression.
ΔH°c = [3 mol × ΔH°f(CO₂(g)) + 4 mol × ΔH°f(H₂O(l))] - [1 mol × ΔH°f(C₃H₈(g)) + 5 mol × ΔH°f(O₂(g))]
ΔH°c = [3 mol × (-393.5 kJ/mol) + 4 mol × (-285.8 kJ/mol)] - [1 mol × (-103.8 kJ/mol) + 5 mol × (0 kJ/mol)]
ΔH°c = -2219.9 kJ
During this phase Change heat energy is being absorbed by the molecules, and as a result the molecules possess a greater ability to move around and possess higher kinetic energy because of this. The molecules also possess a higher potential energy.
When heat energy is supplied to a material it can raise the temperature of mass of the material.
Specific heat is the amount of energy required by 1 g of material to raise the temperature by 1 °C.
equation is
H = mcΔt
H - heat energy
m - mass of material
c - specific heat of the material
Δt - change in temperature
substituting the values in the equation
120 J = 10 g x c x 5 °C
c = 2.4 Jg⁻¹°C⁻¹