Answer:
Step-by-step explanation:
Let the number = x.
We are trying to find out what number (x) we would need to add to 7/12 to get 4/15

Subtract 7/12 from both sides.
We need to make the denominators of the fractions the same.


So,

Answer:
![4x^5\sqrt[3]{3x}](https://tex.z-dn.net/?f=%204x%5E5%5Csqrt%5B3%5D%7B3x%7D%20)
Step-by-step explanation:
I'm not sure I understand the problem, but I think it's this:
![\sqrt[3]{16x^7} \times \sqrt[3]{12x^9} =](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B16x%5E7%7D%20%5Ctimes%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20)
![= \sqrt[3]{16 \times 12 \times x^{16}}](https://tex.z-dn.net/?f=%3D%20%5Csqrt%5B3%5D%7B16%20%5Ctimes%2012%20%5Ctimes%20x%5E%7B16%7D%7D)
![= \sqrt[3]{192 \times x^{15} \times x}](https://tex.z-dn.net/?f=%3D%20%5Csqrt%5B3%5D%7B192%20%5Ctimes%20x%5E%7B15%7D%20%5Ctimes%20x%7D)
![= \sqrt[3]{64 \times 3 \times (x^5)^3 \times x}](https://tex.z-dn.net/?f=%20%3D%20%5Csqrt%5B3%5D%7B64%20%5Ctimes%203%20%5Ctimes%20%28x%5E5%29%5E3%20%5Ctimes%20x%7D%20)
![= \sqrt[3]{4^3 \times 3 \times (x^5)^3 \times x}](https://tex.z-dn.net/?f=%20%3D%20%5Csqrt%5B3%5D%7B4%5E3%20%5Ctimes%203%20%5Ctimes%20%28x%5E5%29%5E3%20%5Ctimes%20x%7D%20)
![= 4x^5\sqrt[3]{3x}](https://tex.z-dn.net/?f=%20%3D%204x%5E5%5Csqrt%5B3%5D%7B3x%7D%20)
<span>measure of ∠EGF = 1/2( 180 - 50)
= 1/2(130)
= 65
</span><span>the measure of ∠CGF = 180 - 65
= 115</span>
Its not possible because if you try to multiply back and forth it wont work.