Answer:
given,
mass of copper = 100 g
latent heat of liquid (He) = 2700 J/l
a) change in energy
Q = m Cp (T₂ - T₁)
Q = 0.1 × 376.812 × (300 - 4)
Q = 11153.63 J
He required
Q = m L
11153.63 = m × 2700
m = 4.13 kg
b) Q = m Cp (T₂ - T₁)
Q = 0.1 × 376.812 × (78 - 4)
Q = 2788.41 J
He required
Q = m L
2788.41 = m × 2700
m = 1.033 kg
c) Q = m Cp (T₂ - T₁)
Q = 0.1 × 376.812 × (20 - 4)
Q = 602.90 J
He required
Q = m L
602.9 = m × 2700
m =0.23 kg
F=ma
f?
m=1300kg
a=1.07m\s squared
f=1300kg x 1.07=1391N
<h2>Answer:</h2>
The refractive index is 1.66
<h2>Explanation:</h2>
The speed of light in a transparent medium is 0.6 times that of its speed in vacuum
.
Refractive index of medium = speed of light in vacuum / speed of light in medium
So
RI = 1/0.6 = 5/3 or 1.66
Answer:3.87*10^-4
Explanation:
What is the decrease in mass, delta mass Xe , of the xenon nucleus as a result of this deca
We have been given the wavelength of the gamma ray, find the frequency using c = freq*wavelength.
C=f*lambda
3*10^8=f*3.44*10^-12
F=0.87*10^20 hz
Then with the frequency, find the energy emitted using equation
E=hf E = freq*Plank's constant
E=.87*10^20*6.62*10^-34
E=575.94*10^(-16)
With this energy, convert into MeV from joules.
With the energy in MeV, use E=mc^2 using c^2 = 931.5 MeV/u.
Plugging and computing all necessary numbers gives you
3.87*10^-4 u.
Answer:
(a) Steel rod: 
Copper rod: 
(b) Steel rod: 
Copper rod: 
Explanation:
Length of each rod = 0.75 m
Diameter of each rod = 1.50 cm = 0.015 m
Tensile force exerted = 4000 N
(a) Strain is given as the ratio of change in length to the original length of a body. Mathematically, it is given as
Strain = 
where Y = Young modulus
F = Fore applied
A = Cross sectional area
For the steel rod:
Y = 200 000 000 000 
F = 4000N
A =
(r = d/2 = 0.015/2 = 0.0075 m)
=> A = 
=> A = 0.000177 
∴ 
For the copper rod:
Y = 120 000 000 000 N/m²
F = 4000N
A =
(r = d/2 = 0.015/2 = 0.0075 m)
=> A = 
=> A = 0.000177 

(b) We can find the elongation by multiplying the Strain by the original length of the rods:
Elongation = Strain * Length
For the steel rod:
Elongation = 
For the copper rod:
Elongation =