<span>biological reactions that happen within cells while reducing the complex interactions found in a whole cell. Eukaryotic and prokaryotic cells have been used for creation of these simplified environments[1]. Subcellular fractions can be isolated by ultracentrifugation to provide molecular machinery that can be used in reactions in the absence of many of the other cellular components.
Cell-free biosystems can be prepared by mixing a number of purified enzymes and coenzymes. Cell-free biosystems are proposed as a new low-cost biomanufacturing platform compared to microbial fermentation used for thousands of years. Cell-free biosystems have several advantages suitable in industrial applications</span>
Answer: A. Liquefy hydrogen under pressure and store it much as we do with liquefied natural gas today.
Explanation:
Current Hydrogen storage methods fall into one of two technologies;
- <em>physical storage</em> where compressed hydrogen gas is stored under pressure or as a liquid; and
- <em>chemical storage</em>, where the hydrogen is bonded with another material to form a hydride and released through a chemical reaction.
Physical storage solutions are commonly used technologies but are problematic when looking at using hydrogen to fuel vehicles. Compressed hydrogen gas needs to be stored under high pressure and requires large and heavy tanks. Also, liquid hydrogen boils at -253°C (-423°F) so it needs to be stored cryogenically with heavy insulation and actually contains less hydrogen compared with the same volume of gasoline.
Chemical storage methods allow hydrogen to be stored at much lower pressures and offer high storage performance due to the strong binding of hydrogen and the high storage densities. They also occupy relatively smaller spaces than either compressed hydrogen gas or liquified hydrogen. A large number of chemical storage systems are under investigation, which involve hydrolysis reactions, hydrogenation/dehydrogenation reactions, ammonia borane and other boron hydrides, ammonia, and alane etc.
Other practical storage methods being researched that focuses on storing hydrogen as a lightweight, compact energy carrier for mobile applications include;
- Nanostructured metal hydrides
- Liquid organic hydrogen carriers (LOHC)
Answer:
1 M
Explanation:
Magnesium chloride will furnish chloride ions as:
Given :
Moles of magnesium chloride = 0.20 mol
Thus, moles of chlorine furnished by magnesium chloride is twice the moles of magnesium chloride as shown below:
Moles of chloride ions by magnesium chloride = 0.40 moles
Potassium chloride will furnish chloride ions as:
Given :
Moles of potassium chloride = 0.10 moles
Thus, moles of chlorine furnished by potassium chloride is same as the moles of potassium chloride as shown below:
Moles of chloride ions by potassium chloride = 0.10 moles
Total moles = 0.40 + 0.10 moles = 0.50 moles
Given, Volume = 500 mL = 0.5 L (1 mL = 10⁻³ L)
Concentration of chloride ions is:
<u>
The final concentration of chloride anion = 1 M</u>
Answer:
The doctor is discussing an Ocular Hypertension disease.
Explanation:
If we have a small space with a defined volume like in this case an eye, when we fill this space with a liquid, the liquid will occupy the whole volume available, and when it is much liquid or fluid, and the volume of the eye can not expand it will start to generate an internal pressure. This higher pressure is called Hypertension.