Answer:
Li
Explanation:
The phenomenon of wave particle duality was well established by Louis deBroglie. The wavelength associated with matter waves was related to its mass and velocity as shown below;
λ= h/mv
Where;
λ= wavelength of matter waves
m= mass of the particle
v= velocity of the particle
This implies that if the velocities of all particles are the same, the wavelength of matter waves will now depend on the mass of the particle. Hence; the wavelength of a matter wave associated with a particle is inversely proportional to the magnitude of the particle's linear momentum. The longest wavelength will then be obtained from the smallest mass of matter. Hence lithium which has the smallest mass will exhibit the longest DeBroglie wavelength
It's a because if you add them together you till get 1.40
Answer:
a) both substances are insoluble in water
b) both substances are soluble in ligroin
c) both substances suffer combustion, octane produces more CO₂ than hexene.
d) both substances are less dense than waterl, with hexene having the lowest density.
e) only hexene would react with bromine
f) only hexene would react with permanganate
Explanation:
a) both substances are non-polar and water is polar
b) both substances are non-polar and lingroin is non-polar
c) C₈H₁₈ + 17.5O₂ → 8CO₂ + 9H₂O
C₆H₁₂ + 9O₂ → 6CO₂ + 6H₂O
d) water = 997 kg/m³
ocatne = 703 kg/m³
hexene = 673 kg/m³
e) bromine test is used to detect unsaturations
f) permanganate test is used to detect unsaturations
The answer is 2.135 mol/Kg
Given that molarity is 2M, that is, 2 moles in 1 liter of solution.
Density of solution is 1.127 g/ml
Volume of solution is 1L or 1000 ml
mass of solution (m) = density × volume
m₁ = density × volume = 1.127 × 1000 = 1127 g
mass of solute, m₂ = number of moles × molar mass
m₂ = 2 × 95.211
m₂ = 190.422 g
mass of solvent = m₁ - m₂
= 1127 - 190.422
= 936.578 g
= 0.9366 Kg
molality = number of moles of solute / mass of solvent (in kg)
= 2 / 0.9366
= 2.135 mol/Kg
What you need to do is find 1/8 of 50
you can just divide 50 by 8 to get 6.25
so now you have to find how many days it will take till there are 6.25 grams of iodine left
every 8.1 days its mass is split in half
so start splitting it in half and every time you do, you add 8.1 days
50/2 =25 8.1
25/2 =12.5 + 8.1
12.5/2= 6.25 +8.1
now you have reached 1/8 of the original amount of Iodine-131
so to find how long it took just add 8.1+8.1+8.1
(this is the same as 8.1x3)
which equals 24.3
it will take 24.3 days for Iodine 131 to decay to 1/8 of its original mass.
(good luck on the regent if thats what your studying for :)