answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lorasvet [3.4K]
2 years ago
9

in football a player statistic for offensive yards is the sum of his rushing yards and his receiving yards in a game. ali is the

running back on the football team. he averages 60 yards rushing and 20 yards receiving per game during the regular season.
Mathematics
1 answer:
olasank [31]2 years ago
6 0

Answer:

What is your question?

Step-by-step explanation:

I don't get what your asking

You might be interested in
A greengrocer sells melons at a profit of 37.5% on price he pays for it.What is the ratio of cost price to selling price
gavmur [86]
S-selling price
c-cost price
p-profit
p=37,5%
\frac{s-c}{s}*100%=37,5%  /:100%
\frac{s-c}{s}=0,375   /*s
s-c=0,375*s  /-s
0-c=-0,625*s /:(-s)
\frac{c}{s}=0,625



5 0
2 years ago
Consider the polynomial: StartFraction x Over 4 EndFraction – 2x5 + StartFraction x cubed Over 2 EndFraction + 1 Which polynomia
Phoenix [80]

Answer:

- 2x^5+ 0x^4 +  \frac{x^3}{2} +0x^2+\frac{x}{4}  + 1

Step-by-step explanation:

Given

\frac{x}{4} - 2x^5 + \frac{x^3}{2} + 1

Required

The standard form of the polynomial

The general form of a polynomial is

ax^n + bx^{n-1} + cx^{n-2} +........+ k

Where k is a constant and the terms are arranged from biggest to smallest exponents

We start by rearranging the given polynomial

- 2x^5+ \frac{x^3}{2} +\frac{x}{4}  + 1

Given that the highest exponent of x is 5;

Let n = 5

Then we fix in the missing terms in terms of n

- 2x^5+ 0x^{n-1} +  \frac{x^3}{2} +0x^{n-3}+\frac{x}{4}  + 1

Substitute 5 for n

- 2x^5+ 0x^{5-1} +  \frac{x^3}{2} +0x^{5-3}+\frac{x}{4}  + 1

- 2x^5+ 0x^{4} +  \frac{x^3}{2} +0x^{2}+\frac{x}{4}  + 1

Hence, the standard form of the given polynomial is - 2x^5+ 0x^4 +  \frac{x^3}{2} +0x^2+\frac{x}{4}  + 1

3 0
2 years ago
a patio is shaped like a golden rectangle. it's length ( the longer side) is 16ft. what is the patios width? write your answer i
Trava [24]
a\ golden\ rectangle:\ \ \  \frac{a+b}{a}=  \frac{a}{b} \\----------------\\a+b=16\ [ft]\ \ \ \ \Rightarrow \ \ \ b=16-a\\\\ \frac{16}{a} = \frac{a}{16-a} \ \ \ \ \Leftrightarrow\ \ \ 16(16-a)=a^2\\\\a^2+16a-256=0\\\\\ \ \ \Rightarrow\ \ \  \Delta=16^2-4\cdot(-256)=256\cdot5\ \ \ \Rightarrow\ \ \  \sqrt{\Delta} =16 \sqrt{5} \\\\a_1= \frac{-16-16 \sqrt{5} }{2} =-8-8 \sqrt{5} 0\\\\

a=8( \sqrt{5} -1)\ \ \Rightarrow\ \ b=16-8( \sqrt{5} -1)=16-8\sqrt{5} +8=8(3- \sqrt{5} )\\\\Ans.\ This\ golden\ ractangle\ has\ sides:\\.\ \ \ \ \ \ \  8( \sqrt{5} -1)\ [ft]\ \ and\ \ 8(3- \sqrt{5} )\ [ft]
3 0
2 years ago
Evaluate. 58−(14)2=58-142= ________
nasty-shy [4]

For this case we have the following expression:

58- (14) ^ 2

The first step is to solve the quadratic term.

We have then:

58- (14) ^ 2 = 58-196

Then, the second step is to subtract both resulting numbers:

58- (14) ^ 2 = -138

We observe that the result obtained is a negative number.

Answer:

The result of the expression is given by:

58- (14) ^ 2 = -138

7 0
2 years ago
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
2 years ago
Other questions:
  • Convert the following units. a. 108 eggs to dozens b. 35.79 dollars to cents c. 64 identical shoes to pairs d. 19,045 cents to d
    10·2 answers
  • If sin 20 degree=a and cos20 degree=b then which of the following represents the correct value of sin 70 degree in terms of a an
    15·1 answer
  • Calculate the value of x to one decimal place. inches
    13·1 answer
  • Meg has a can that contains 80% orange juice and the rest water. The can has 1 liter of water. Part A: Write an equation using o
    5·1 answer
  • Grandma baked 96 cookies and gave them to her grandchildren. One of the grandchildren, Cindy, received c fewer cookies than she
    8·2 answers
  • What is the y-intercept of the function f(x) = –f(x) equals negative StartFraction 2 Over 9 EndFraction x plus StartFraction 1 O
    7·2 answers
  • Troy made a scale drawing of the Statue of Liberty which has an actual height of 305 feet. He decides to use a scale in which 1
    15·1 answer
  • Apply the distributive property to factor out the greatest common factor 16g+20h
    5·1 answer
  • What integer is closest to 31/7
    12·1 answer
  • You’re working in a pharmacy, and are making a table to help with dosage amounts for a certain drug. The recommended dosage is 4
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!