answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pshichka [43]
2 years ago
10

Unit 3 parallel and perpendicular lines homework 4 parallel line proofs

Mathematics
1 answer:
Alex17521 [72]2 years ago
6 0

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

You might be interested in
Given the general identity tan X =sin X/cos X , which equation relating the acute angles, A and C, of a right ∆ABC is true?
irakobra [83]

First, note that m\angle A+m\angle C=90^{\circ}. Then

m\angle A=90^{\circ}-m\angle C \text{ and } m\angle C=90^{\circ}-m\angle A.

Consider all options:

A.

\tan A=\dfrac{\sin A}{\sin C}

By the definition,

\tan A=\dfrac{BC}{AB},\\ \\\sin A=\dfrac{BC}{AC},\\ \\\sin C=\dfrac{AB}{AC}.

Now

\dfrac{\sin A}{\sin C}=\dfrac{\dfrac{BC}{AC}}{\dfrac{AB}{AC}}=\dfrac{BC}{AB}=\tan A.

Option A is true.

B.

\cos A=\dfrac{\tan (90^{\circ}-A)}{\sin (90^{\circ}-C)}.

By the definition,

\cos A=\dfrac{AB}{AC},\\ \\\tan (90^{\circ}-A)=\dfrac{\sin(90^{\circ}-A)}{\cos(90^{\circ}-A)}=\dfrac{\sin C}{\cos C}=\dfrac{\dfrac{AB}{AC}}{\dfrac{BC}{AC}}=\dfrac{AB}{BC},\\ \\\sin (90^{\circ}-C)=\sin A=\dfrac{BC}{AC}.

Then

\dfrac{\tan (90^{\circ}-A)}{\sin (90^{\circ}-C)}=\dfrac{\dfrac{AB}{BC}}{\dfrac{BC}{AC}}=\dfrac{AB\cdot AC}{BC^2}\neq \dfrac{AB}{AC}.

Option B is false.

3.

\sin C = \dfrac{\cos A}{\tan C}.

By the definition,

\sin C=\dfrac{AB}{AC},\\ \\\cos A=\dfrac{AB}{AC},\\ \\\tan C=\dfrac{AB}{BC}.

Now

\dfrac{\cos A}{\tan C}=\dfrac{\dfrac{AB}{AC}}{\dfrac{AB}{BC}}=\dfrac{BC}{AC}\neq \sin C.

Option C is false.

D.

\cos A=\tan C.

By the definition,

\cos A=\dfrac{AB}{AC},\\ \\\tan C=\dfrac{AB}{BC}.

As you can see \cos A\neq \tan C and option D is not true.

E.

\sin C = \dfrac{\cos(90^{\circ}-C)}{\tan A}.

By the definition,

\sin C=\dfrac{AB}{AC},\\ \\\cos (90^{\circ}-C)=\cos A=\dfrac{AB}{AC},\\ \\\tan A=\dfrac{BC}{AB}.

Then

\dfrac{\cos(90^{\circ}-C)}{\tan A}=\dfrac{\dfrac{AB}{AC}}{\dfrac{BC}{AB}}=\dfrac{AB^2}{AC\cdot BC}\neq \sin C.

This option is false.

8 0
2 years ago
Read 2 more answers
Explain how you could write a quadratic function in factored form that would have a vertex with an x-coordinate of 3 and two dis
dem82 [27]

Two distinct roots means two real solutions for x (the parabola needs to cross the x-axis twice)

Vertex form of a quadratic equation: (h,k) is vertex

y = a(x-h)^2 + k

The x of the vertex needs to equal 3

y = a(x-3)^2 + k

In order to have two distinct roots the parabola must be (+a) upward facing with vertex below the x-axis or (-a) downward facing with vertex above the x-axis. Parabolas are symmetrical so for an easy factorable equation make "a" 1 or -1 depending on if you want the upward/downward facing one.

y = (x-3)^2 - 1

Vertex (3,-1) upwards facing with two distinct roots 4 and 2

y = x^2 -6x + 9 - 1

y = x^2 -6x + 8

y = (x - 4)(x - 2)



7 0
2 years ago
Read 2 more answers
A department store sells logo shirts at an original price of $20. Every month that a shirt doesn’t sell, the store reduces the s
Tasya [4]
Given:
Original price = 20
reduces selling price by 25% every month it's not sold.

First markdown month:
20 * (100%-25%) = 20 * 75% = 15

Second markdown month
15 * 75% = 11.25

Macy, employee gets a 50% discount off the current price.
11.25 * 50% = 5.625
11.25 - 5.625 = 5.625 or 5.63

The pre-tax price of the shirt for Macy will be $5.63
3 0
2 years ago
Read 2 more answers
How many weeks of flea treatment would Jim’s dog get from one package if each treatment only lasted 3 weeks In a normal year whe
4vir4ik [10]

Solution

Number of weeks in a year = 52 weeks

If in a normal year when each package of flea treatment lasts for 4 weeks, then in a year there Jim's dog will have to be treated for

\frac{52}{4} =13 times

Where as, when the fleas are bad in a year, the treatment lasts for only 3 weeks.

Then in a year Jim's dog would get

\frac{52}{3} =17 times


So Jim's dog will get 17- 13 =4 treatments more.

4 treatments that are made in 3 weeks each will be 4×3 =12 weeks more treatment

4 0
2 years ago
About 400,000 people visited an art museum in December. What could be the exact number of people who visited the art museum
Zigmanuir [339]
The answer is 359,572
8 0
2 years ago
Read 2 more answers
Other questions:
  • Curtis Hindle purchased a mountain bike for $650.00 with 75% down. He will make 12 payments of $24.38 each. What is the total am
    9·2 answers
  • Line CD passes through points (0, 2) and (4, 6). Which equation represents line CD?. .a. y = 2x – 2. b.y = 2x + 2. c.y = x + 2.
    9·2 answers
  • Which statement provides a counterexample to the following faulty definition? A square is a figure with four congruent sides. Qu
    7·2 answers
  • Find a formula for the general term an of the sequence, assuming that the pattern of the first few terms continues. (Assume that
    6·1 answer
  • One side of a laptop is 9.5 inches and the other side is 14 inches. Using the Pythagorean Theorem, what is the length of the dia
    15·1 answer
  • Which multiplication equation can be used to explain the solution to 15 divided by 1/3
    10·1 answer
  • Between 1896—when the Dow Jones index was created— and 2012, the index rose in 65% of the years. Based on this information, and
    7·1 answer
  • Akbar, Ali and Arman are 3 brothers. The ratio of Akbar's age to Arman's age is 1 : 2 and the ratio of Akbar's age to Ali's age
    7·1 answer
  • The cost of catering a dinner is $11.95 per person plus $25 for delivery and setup. Which statement is true about the graph of t
    6·2 answers
  • Ray wants to buy a hat that costs $10 and some shirts that cost $12 each. The sales tax rate is 6.5%. The expression 0.065(10+12
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!