answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mart [117]
2 years ago
4

A 1.0 m long piece of coaxial cable has a wire with a radius of 1.1 mm and a concentric conductor with inner radius 1.3 mm. The

area between the cable and the conductor is filled with a dielectric. If the voltage drop across the capacitor is 6000 V when the line charge density is 8.8 μC/m, find the value of the dielectric constant. (k = 1/4πε₀ = 8.99 × 109 N · m²/C²)A) 4.8
B) 5.3
C) 4.4
D) 5.7
Physics
1 answer:
Alex Ar [27]2 years ago
5 0

Answer:

C) 4.4

Explanation:

The potential of a cylindrical capacitor is given by the formula:

V=\frac{2kq}{L\epsilon}ln(\frac{a}{b})\\\\\epsilon=\frac{2kq}{LV}ln(\frac{a}{b})

where:

k : Coulomb Constant

L : length of the capacitor

a : outer radius

b : inner radius

V : potential

By replacing we obtain:

\epsilon=\frac{2(8.89*10^{9}N/m^2C^2)(8.8*10^{-6}C)}{(1m)(6000V)}ln(\frac{1.3mm}{1.1mm})=4.35

Hence, the answer is C) 4.4 (4.35 is approximately 4.4)

hope this helps!!

You might be interested in
A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wal
Studentka2010 [4]

(a) 18.9 m/s

The motion of the stone consists of two independent motions:

- A horizontal motion at constant speed

- A vertical motion with constant acceleration (g=9.8 m/s^2) downward

We can calculate the components of the initial velocity of the stone as it is launched from the ground:

u_x = v_0 cos \theta = (25.0)(cos 41.0^{\circ})=18.9 m/s\\u_y = v_0 sin \theta = (25.0)(sin 41.0^{\circ})=16.4 m/s

The horizontal velocity remains constant, while the vertical velocity changes due to the acceleration along the vertical direction.

When the stone reaches the top of its parabolic path, the vertical velocity has became zero (because it is changing direction): so the speed of the stone is simply equal to the horizontal velocity, therefore

v=18.9 m/s

(b) 22.2 m/s

We can solve this part by analyzing the vertical motion only first. In fact, the vertical velocity at any height h during the motion is given by

v_y^2 - u_y^2 = 2ah (1)

where

u_y = 16.4 m/s is the initial vertical velocity

v_y is the vertical velocity at height h

a=g=-9.8 m/s^2 is the acceleration due to gravity (negative because it is downward)

At the top of the parabolic path, v_y = 0, so we can use the equation to find the maximum height

h_{max} = \frac{-u_y^2}{2a}=\frac{-(16.4)^2}{2(-9.8)}=13.7 m

So, at half of the maximum height,

h = \frac{13.7}{2}=6.9 m

And so we can use again eq(1) to find the vertical velocity at h = 6.9 m:

v_y = \sqrt{u_y^2 + 2ah}=\sqrt{(16.4)^2+2(-9.8)(6.9)}=11.6 m/s

And so, the speed of the stone at half of the maximum height is

v=\sqrt{v_x^2+v_y^2}=\sqrt{18.9^2+11.6^2}=22.2 m/s

(c) 17.4% faster

We said that the speed at the top of the trajectory (part a) is

v_1 = 18.9 m/s

while the speed at half of the maximum height (part b) is

v_2 = 22.2 m/s

So the difference is

\Delta v = v_2 - v_2 = 22.2 - 18.9 = 3.3 m/s

And so, in percentage,

\frac{\Delta v}{v_1} \cdot 100 = \frac{3.3}{18.9}\cdot 100=17.4\%

So, the stone in part (b) is moving 17.4% faster than in part (a).

4 0
2 years ago
A pump lifts water from a lake to a large tank 20 m above the lake. How much work against gravity does the pump do as it transfe
Aleonysh [2.5K]

Answer:

980 kJ

Explanation:

Work = change in energy

W = mgh

W = (1000 kg/m³ × 5.0 m³) (9.8 m/s²) (20 m)

W = 980,000 J

W = 980 kJ

The pump does 980 kJ of work.

3 0
2 years ago
Read 2 more answers
Small frogs that are good jumpers are capable of remarkable accelerations. One species reaches a takeoff speed of3.7 m/s in60 ms
MAVERICK [17]

We know that acceleration is change in velocity by time taken for that change.

In this case velocity change is 3.7 m/s

Time taken for this change = 60 ms = 6 *10^{-3} seconds

So acceleration of frog  = \frac{3.7}{60*10^{-3}}

                                       = 61.66 m/s^2

So acceleration of frog is 61.66 m/s^2

o it is evident that frog is capable of remarkable accelerations.

8 0
2 years ago
Read 2 more answers
Mars has two moons, Phobos and Deimos. Phobos orbits Mars at a distance of 9380 km from Mars's center, while Deimos orbits at 23
Sloan [31]

Answer:

The ratio is   \frac{T_1}{T_2}  = 3.965

Explanation:

From the question we are told that

   The  radius of Phobos orbit is  R_2 =  9380 km

    The radius  of Deimos orbit is  R_1  =  23500 \  km

Generally from Kepler's third law

    T^2 =  \frac{ 4 *  \pi^2 *  R^3}{G * M  }

Here M is the mass of Mars which is constant

        G is the gravitational  constant

So we see that \frac{ 4 *  \pi^2  }{G * M  } =  constant

   

    T^2 = R^3   *  constant      

=>  [\frac{T_1}{T_2} ]^2 =  [\frac{R_1}{R_2} ]^3

Here T_1 is the period of Deimos

and  T_1 is the period of  Phobos

So

      [\frac{T_1}{T_2} ] =  [\frac{R_1}{R_2} ]^{\frac{3}{2}}

=>    \frac{T_1}{T_2}  =  [\frac{23500 }{9380} ]^{\frac{3}{2}}]

=>    \frac{T_1}{T_2}  = 3.965

   

8 0
2 years ago
the distance between the sun and earth is about 1.5X10^11 m. express this distance with an SI prefix and kilometers
Angelina_Jolie [31]
First, we write the SI prefixed. The SI unit for distance is meters.

Kilo = 10³
Mega = 10⁶
Giga = 10⁹
Terra = 10¹²

Because our value has ten to the power of 11, we will use the closest and lowest power prefix, which is giga. 

1.5 x 10¹¹ /  10⁹
= 1.5 x 10² Gm or 150 Gm

Writing in kilometers, we simply repeat the procedure except we divide by 10³ this time.

1.5 x 10¹¹ / 10³
= 1.5 x 10⁸ km
5 0
2 years ago
Other questions:
  • An electric heater of power 1000W has a resistance of 10 ohm. calculate the magnitude of current
    10·1 answer
  • A dog runs 30 feet to the north then 5 feet to the south what is the displacement of the dog
    12·2 answers
  • Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).
    8·2 answers
  • An object of mass 8.0 kg is attached to an ideal massless spring and allowed to hang in the Earth's gravitational field. The spr
    5·2 answers
  • A disk rotates around an axis through its center that is perpendicular to the plane of the disk. The disk has a line drawn on it
    9·1 answer
  • Loss of traction between the rear wheels and road surfaces like ice, sand, or gravel results in what is called _______________.
    8·1 answer
  • The small piston of a hydraulic lift has a cross-sectional of 3 00 cm2 and its large piston has a cross-sectional area of 200 cm
    14·1 answer
  • You’re squeezing a springy rubber ball in your hand. If you push inward on it with a force of 1 N, it dents inward 2 mm. How far
    11·1 answer
  • A ball of unknown mass m is tossed straight up with initial speed v. At the moment it is released, the ball is a height h above
    5·1 answer
  • If John mows 11.5 meters of lawn from east
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!