Answer:
*The model should show the carbon compounds enter as carbon dioxide
*The model should show the carbon compounds exit as 3-carbon molecules
Explanation:
In plants, carbon dioxide (CO2) enters the chloroplast through the stomata and diffuses into the stroma of the chloroplast—the site of the Calvin cycle reactions where sugar is synthesized. The reactions are named after the scientist who discovered them, and reference the fact that the reactions function as a cycle.
Answer:
The H+ (aq) concentration of the resulting solution is 4.1 mol/dm³
(Option C)
Explanation:
Given;
concentration of HA,
= 6.0mol/dm³
volume of HA,
= 25.0cm³, = 0.025dm³
Concentration of HB,
= 3.0mol/dm³
volume of HB,
= 45.0cm³ = 0.045dm³
To determine the H+ (aq) concentration in mol/dm³ in the resulting solution, we apply concentration formula;

where;
is initial concentration
is initial volume
is final concentration of the solution
is final volume of the solution

Therefore, the H+ (aq) concentration of the resulting solution is 4.1 mol/dm³
Answer:
2
Explanation:
Isomers are molecules with the same molecular formula, but with some difference. If that difference is in the manner the atoms are distributed in the molecule, they are called structural isomers; if the difference is the way the molecule is in space, they're called space isomers (cis/trans); and there are the stereoisomers, which the molecules are images that can be overlapping.
The stereoisomers have the property to deviate the polarized light, and, when a molecule has a chiral carbon, it means that it has stereoisomers. The number of stereoisomers is 2ⁿ, where n is the number of chiral carbons.
Chiral carbon is a carbon that bonds with four different structures. So, below is represented the molecule of propylene glycol, and it has only one chiral carbon (see the blue arrow), so, it has only 2 stereoisomers.
Is there some kind of diagram? how is your finger pushing the coin, and where? It may be:
1)friction against a surface
2)push from the finger
3)gravity
4)air resistance behind the coin
Pure water does
not have enough ions to conduct electricity. A mixture of metals such as iron,
zinc and copper in the wet soil can trigger electrolysis that requires excess
energy in the form of over potential to conduct electricity. The excess energy
is needed due to limited self-ionization of water. The wet soil then can
conduct current when positive and negative ions are present. The water ions begin
to flow from anode (positive electrode) to cathode (negative electrode) to be oxidize
and produce electricity.
<span> </span>