Answer:
Total distance mouse traveled in 3 hours =
of a mile
The mouse traveled the same distance in each hour. So in order to find the distance covered in 1 hour we have to divide the distance covered in 3 hours by 3. This will give us the distance that the mouse traveled in one hour.
So, the distance traveled in one hour will be =
of a mile
The error which Matt made was that he divided only the denominator of the expression by 3, this probably was a calculation error.
Correct conclusion will be: Mouse travel 1/24 of a mile each hour
Hello there,
There is a total of 40 animals in that in 10 zebras, 10 lions, 10 elephants, and 10 monkeys.
So the probability of them both being lions is pretty rare. 2/40 so that would give you a 1/20 chance of both crackers being both lions.
I hope this helps!
We can start solving this problem by first identifying what the elements of the sets really are.
R is composed of real numbers. This means that all numbers, whether rational or not, are included in this set.
Z is composed of integers. Integers include all negative and positive numbers as well as zero (it is essentially a set of whole numbers as well as their negated values).
W on the other hand has 0,1,2, and onward as its elements. These numbers are known as whole numbers.
W ⊂ Z: TRUE. As mentioned earlier, Z includes all whole numbers thus W is a subset of it.
R ⊂ W: FALSE. Not all real numbers are whole numbers. Whole numbers must be rational and expressed without fractions. Some real numbers do not meet this criteria.
0 ∈ Z: TRUE. Zero is indeed an integer thus it is an element of Z.
∅ ⊂ R: TRUE. A null set is a subset of R, and in fact every set in general. There are no elements in a null set thus making it automatically a subset of any non-empty set by definition (since NONE of its elements are <u>not</u> an element of R).
{0,1,2,...} ⊆ W: TRUE. The set on the left is exactly what is defined on the problem statement for W. (The bar below the subset symbol just means that the subset is not strict, therefore the set on the left can be <u>equal</u> to the set on the right. Without it, the statement would be false since a strict subset requires that the two sets should not be equal).
-2 ∈ W: FALSE. W is just composed of whole numbers and not of its negated counterparts.
I would guess the answer to be Tension, if not for the extra 'X'....
or
Extension, if you add another 'E'...
Answer:
(E) None of these above are true.
Step-by-step explanation:
Married = 74% or 0.74
College graduates = 42% or 0.42
pr(married | college graduates) = 0.56
(A) These events are pairwise disjoint. This is false. Pairwise disjoint are also known as mutually exclusive events. Here we can see that both events are occurring at same time.
(B) These events are independent events. This is also false.
(C) These events are both independent and pairwise disjoint. False
(D) A worker is either married or a college graduate always. False
Here Probability(A or B) shall be 1
= Pr(A) + Pr(B) - Pr( A and B) = 0.74 + 0.42 - 0.56 * 0.42 = 0.9248
This is not equal to 1.
(E) None of these above are true. This is true.