Answer:
Inner radius = 2 mm
Explanation:
In a coaxial cable, series inductance per unit length is given by the formula;
L' = (µ/(2π))•ln(R/r)
Where R is outer radius and r is inner radius.
We are given;
L' = 50 nH/m = 50 × 10^(-9) H/m
R = 2.6mm = 2.6 × 10^(-3) m
Meanwhile µ is magnetic constant and has a value of µ = µ_o = 4π × 10^(−7) H/m
Plugging in the relevant values, we have;
50 × 10^(-9) = (4π × 10^(−7))/(2π)) × ln(2.6 × 10^(-3)/r)
Rearranging, we have;
(50 × 10^(-9))/(2 × 10^(−7)) = ln((2.6 × 10^(-3))/r)
0.25 = ln((2.6 × 10^(-3))/r)
So,
e^(0.25) = (2.6 × 10^(-3))/r)
1.284 = (2.6 × 10^(-3))/r)
Cross multiply to give;
r = (2.6 × 10^(-3))/1.284)
r = 0.002 m or 2 mm
Answer:
a) 
b) 
Explanation:
From the question we are told that:
Density 
Velocity of wind 
Dimension of rectangle:50 cm wide and 90 cm
Drag coefficient 
a)
Generally the equation for Force is mathematically given by



Therefore Torque



b)
Generally the equation for torque due to weight is mathematically given by

Where

Therefore




Answer:

Explanation:
Given that
Constant rate of leak =R
Mass at time T ,m=RT
At any time t
The mass = Rt
So the total mass in downward direction=(M+Rt)
Now force equation
(M+Rt) a =P- (M+Rt) g

We know that





This is the velocity of bucket at the instance when it become empty.
Let's ask this question step by step:
Part A)
a x b = (3.0i + 5.0j) x (2.0i + 4.0j) = (12-10) k = 2k
ab = (3.0i + 5.0j). (2.0i + 4.0j) = 6 + 20 = 26
Part (c)
(a + b) b = [(3.0i + 5.0j) + (2.0i + 4.0j)]. (2.0i + 4.0j)
(a + b) b = (5.0i + 9.0j). (2.0i + 4.0j)
(a + b) b = 10 + 36
(a + b) b = 46
Part (d)
comp (ba) = (a.b) / lbl
a.b = (3.0i + 5.0j). (2.0i + 4.0j) = 6 + 20 = 26
lbl = root ((2.0) ^ 2 + (4.0) ^ 2) = root (20)
comp (ba) = 26 / root (20)
answer
2k
26
46
26 / root (20)
The answer would be D. Eating nutrient-dense foods