Answer:
Q=486.49 KJ/kg
Explanation:
Given that
V= 0.2 m³
At initial condition
P= 2 MPa
T=320 °C
Final condition
P= 2 MPa
T=540°C
From steam table
At P= 2 MPa and T=320 °C
h₁=3070.15 KJ/kg
At P= 2 MPa and T=540°C
h₂=3556.64 KJ/kg
So the heat transfer ,Q=h₂ - h₁
Q= 3556.64 - 3070.15 KJ/kg
Q=486.49 KJ/kg
Answer:
Vc2= V(l+e) ^2/4
Vg2= V(l-e^2)/4
Explanation:
Conservation momentum, when ball A strikes Ball B
Where,
M= Mass
V= Velocity
Ma(VA)1+ Mg(Vg)2= Ma(Va)2+ Ma(Vg)2
MV + 0= MVg2
Coefficient of restitution =
e= (Vg)2- (Va)2/(Va)1- (Vg)1
e= (Vg)2- (Va)2/ V-0
Solving equation 1 and 2 yield
(Va)2= V(l-e) /2
(Vg)2= V(l+e)/2
Conservative momentum when ball b strikes c
Mg(Vg)2+Mc(Vc)1 = Mg(Vg)3+Mc(Vc)2
=> M[V(l+e) /2] + 0 = M(Vg)3 + M(Vc) 2
Coefficient of Restitution,
e= (Vc)2 - (Vg)2/(Vg)2- (Vc)1
=> e= (Vc)2 - (Vg)2/V(l+e) /2
Solving equation 3 and 4,
Vc2= V(l+e) ^2/4
Vg2= V(l-e^2)/4
Answer:
the welding gun liner regulates the shielding gas.
Explanation:
The purpose of the welding gun liner is to properly position the welding wire from the wire feeder till it gets to the nozzle or contact tip of the gun. <em>Regulation of the shielding gas depends on factors such as the speed, current, and type of gas being used. </em>In gas metal arc welding, an electric arc is used to generate heat which melts both the electrode and the workpiece or base metal.
The electric arc produced is shielded from contamination by the shielding gas. The heat generated by the short electric arc is low.
Answer:
w=2.25
Explanation:
It is necessary to determine the maximum w so that the normal stress in the AB and CD rods does not exceed the permitted normal stress.
The surface of the cross-section of the stapes was determined:
A_ab= 10 mm^2
A-cd= 15 mm^2
The maximum load is determined from the condition that the normal stresses is not higher than the permitted normal stress σ_allow.
σ_ab = F_ab/A_ab
σ_allow
σ_cd = F_cd/A_cd
σ_allow
In the next step we will determine the static size: Picture b).
We apply the conditions of equilibrium:
∑F_x=0
∑F_y=0
∑M=0
∑M_a=0 ==> -w*6*0.5*6*0.75*F_cd*6 =0
==> F_cd = 2*w*k*N
∑F_y=0 ==> F_cd+F_ab - 6*w*0.5 ==>2*w+F_ab -6*w*0.5 =0
==> F_ab = w*k*N
Now we determine the load w
<u>Sector AB: </u>
σ_ab = F_ab/A_ab
σ_allow=300 KPa
= w/10*10^-6
σ_allow=300 KPa
w_ab = 3*10^-3 kN/m
<u>Sector CD: </u>
σ_cd = F_cd/A_cd
σ_allow=300 KPa
= 2*w/15*10^-6
σ_allow=300 KPa
w_cd = 2.25*10^-3 kN/m
w=min{w_ab;w_cd} ==> w=min{3*10^-3;2.25*10^-3}
==> w=2.25 * 10^-3 kN/m
<u>The solution is: </u>
w=2.25 N/m
note:
find the attached graph