Answer:
2
Explanation:
Mass of water molecule = mass of hydrated salt - mass of anhydrous salt
Mass of water molecule = 5.00 - 4.26 = 0.74g of water molecule.
Number of moles = mass / molarmass
Molar mass of water = 18.015g/mol
No. of moles of water = 0.74 / 18.015 = 0.0411 moles.
Mass of BaCl2 present =?
1 mole of BaCl2 = 208.23 g
X mole of BaCl2 = 4.26 g
X = (4.26 * 1) / 208.23
X = 0.020
0.020 moles is present in 4.26g of BaCl2
Mole ratio between water and BaCl2 =
0.0411 / 0.020 = 2
Therefore 2 molecules of water is present the hydrated salt.
<span>When an ice cube is placed on a kitchen counter, heat will flow from the ice cube to the counter, causing the molecules in the counter to move more slowly. The molecules of the counter move more slowly because the heat transferred to them from the ice has reduced their kinetic energy.</span>
Answer is: a lower freezing point has solution of K₂SO₄.
Change in freezing
point from pure solvent to solution: ΔT =i · Kf · b.<span>
Kf - molal freezing-point depression constant for water is 1.86°C/m.
b - molality, moles of solute per
kilogram of solvent.
i - </span>Van't
Hoff factor.<span>
b(K</span>₂SO₄<span>) = 0.35 m.
</span>b(KCl) = 0.5 m.
i(K₂SO₄) = 3.
i(KCl) = 2.
ΔT(K₂SO₄) = 3 · 0.35 m · 1.86°C/m.
ΔT(K₂SO₄) = 1.953°C.
ΔT(KCl) = 2 · 0.5 m · 1.86°C/m.
ΔT(KCl) = 1.86°C.
To answer the problem given:
|0.53−4.0| / 4.0 * 100%
= 3.47 / 4.0 * 100%
= 87%
The maximum theoretical percent recovery from the
crystallization of 4.0 g of acetanilide from 100 ml of water is 87%. I
am hoping that this answer has satisfied your query and it will be able to help
you in your endeavor, and if you would like, feel free to ask another question.
Answer:
The information that can be used to determine which mixture has the higher proportion of KCl IS INFORMATION ABOUT THE MASS OF CHLORINE IN EACH MIXTURE, THIS INFORMATION CAN BE OBTAINED BY USING THE LAW OF DEFINITE PROPORTION.
Explanation:
The law of definite proportion states that the chemical composition by mass of a chemical compound is always constant. For instance, a chemical compound that is made up of two elements will always contain the same proportions of the constituent elements regardless of the quantity of chemical that was used.
Using the law of definite proportion, we can determine the proportion of sodium and chlorine in NaCl and the proportion of potassium and chlorine in KCl if the mass of chlorine that was used is known. Based on the results obtained, one can easily determine the mixtures that has higher proportion of KCl.