Answer:
The P-H bonds are more polar than the N-H bonds.
Explanation:
Phosphine is a polar molecule with non-polar bonds. The phosphorus atom is bonded to three hydrogen atoms and the phosphorus atom has a lone pair of electrons. Since hydrogen and phosphorus are equal in electronegativity, it implies that they attract the shared pairs of electrons the same amount,hence bonding electrons are shared equally making the covalent bonds non-polar.
The lone pair of electrons on phosphorus causes the molecule to be asymmetrical with respect to charge distribution this is why the molecule is polar even though the are non-polar bonds in the molecule.
Looking at the values of electro negativity stated in the question, one can easily see that the difference in electro negativity between nitrogen and hydrogen is 0.9 while the difference in electro negativity between phosphorus and hydrogen is zero. It is clear that NH3 is naturally more polar than PH3 since each individual N-H bond in NH3 is a polar bond while the individual P-H bonds in PH3 are nonpolar.
Answer:
The NMR spectrum that corresponds best to p-bromoaniline is the one that is attached in the image below.
Explanation:
For the p-bromoaniline 3 types of hydrogen are observed. The first signal that appears at 3.7 ppm would be from the hydrogens of the NH2 group, the hydrogens in ortho position with respect to the NH2 group give a double at approximately 6.54 ppm, and finally the characteristic 7.21 ppm signal is observed for the hydrogens in meta position with with respect to the NH2 group.
It is important to ensure that treated water remains safe to drink because water does not last forever as it can gain bacteria and organisms in it. To make sure storage of water is safe is to simply add chlorine again over a period of time.
-never store in direct sunlight
-containment of the water is clean
-make sure chemicals or anything that can contaminate it doesn't come near it