Answer:
to which cations from the salt bridge migrate
Explanation:
A voltaic cell is an electrochemical cell that uses spontaneous redox reactions to generate electricity. It's composed of a cathode, an anode, and a salt bridge.
In cathode, the substance is gaining electrons, so it's reducing, in the anode, the substance is losing electrons, so it's oxidating. The flow of electrons is from the anode to the cathode.
The salt bridge is a bond between the cathode and the anode. When the redox reaction takes place, the substances produce its ions, so the solution is no more neutral. The salt bridge allows the solutions to become neutral and the redox reaction continues.
So, the cathode produces anions, which goes to the anode, and the anode produces cations, which goes to the cathode. Then, the cathode n a voltaic cell is the electrode to which cations from salt bridge migrate and where the reduction takes place.
First, we determine the number of moles of gas present using the ideal gas equation.
PV = nRT
n = PV / RT
n = (1.4 * 226.4) / (0.082 *(27 + 273.15))
n = 12.88
Next, we use the given percentages to find the moles of helium present
Moles of helium = 0.655 * 12.88
Moles of helium = 8.44
Next, we use the formula:
Mass = moles * molar mass
Mass of helium = 8.44 * 4
Mass of helium = 33.76 grams
Answer:

Explanation:
Hello,
a) In this case, since the heat associated with the dissolution of ammonium nitrate is positive, such reaction is endothermic as it absorbs heat.
b) Now, for computing the temperature once the dissolution is done, we apply (considering that it is a cooling process):

Nonetheless, we should first compute the moles of the mixture as:

Thus, the total absorbed heat is:

Now, the temperature is:

Best regards.