<u>Answer:</u> The enthalpy of the reaction for the production of
is coming out to be -74.9 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(CH_4(g))})]-[(1\times \Delta H^o_f_{(C(s))})+(2\times \Delta H^o_f_{(H_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CH_4%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-74.9))]-[1\times 0)+(2\times 0)]\\\\\Delta H^o_{rxn}=-74.9kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-74.9%29%29%5D-%5B1%5Ctimes%200%29%2B%282%5Ctimes%200%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_%7Brxn%7D%3D-74.9kJ)
Hence, the enthalpy of the reaction for the production of
is coming out to be -74.9 kJ
Answer:
1. 176 × 10^12 W ; 78400000000
Explanation:
Given the following :
Fall rate = 2,400,000kg/s
Average height of fall = 50m
Gravitational Potential of falling water = mgh = mass × acceleration due to gravity × height =
How many 15 W LED light bulbs could it power?
Recall : power = workdone / time
Workdone = gravitational potential energy
Mass of water = density * volume
Density of water = 1 * 10^3kg/m^3
Rate of fow = volume / time = 2400000
Hence,
Power = 1000 * 2,400,000 * 9.8 * 50
Power = 1176000000000
Power = 1. 176 × 10^12 W
How many 15 W LED light bulbs could it power?
1176000000000 / 15 = 78400000000
= 78400000000 15 W bulbs
Answer:
Ag⁺ (aq) + I¯ (aq) —> AgI (s)
Explanation:
We'll begin by writing the dissociation equation for aqueous AgNO₃ and KI.
Aqueous AgNO₃ and KI will dissociate in solution as follow:
AgNO₃ (aq) —> Ag⁺(aq) + NO₃¯ (aq)
KI (aq) —> K⁺(aq) + I¯(aq)
Aqueous AgNO₃ and KI will react as follow:
AgNO₃ (aq) + KI (aq) —>
Ag⁺(aq) + NO₃¯ (aq) + K⁺ (aq) + I¯(aq) —> AgI (s) + K⁺ (aq) + NO₃¯ (aq)
Cancel out the spectator ions (i.e ions that appears on both sides of the equation) to obtain the net ionic equation. The spectator ions are K⁺ and NO₃¯.
Thus, the net ionic equation is:
Ag⁺ (aq) + I¯ (aq) —> AgI (s)
Answer:
4.34.
Explanation:
<em>∵ pH = pKa + log [salt]/[Acid]</em>
∴ pH = - log(Ka) + log [salt]/[Acid]
∴ pH = - log(6.8 x 10⁻⁵) + log(0.75)/(0.50)
<em>∴ pH = 4.167 + 0.176 = 4.343 ≅ 4.34.</em>
<em></em>
Answer:
2HgS + 3O2 → 2HgO + 2SO2
The coefficients are: 2, 3, 2, 2
Explanation:
HgS + O2 → HgO + SO2
The equation can be balance as follow:
Put 3 in front of O2 as shown below:
HgS + 3O2 → HgO + SO2
Now we can see that there are 6 atoms of O on the left side of the equation and a total of 3 atoms on the right side. It can be balance by putting 2 in front of HgO and SO2 as shown below:
HgS + 3O2 → 2HgO + 2SO2
Now we have 2 atoms of both Hg and S on the right side and 1atom each on the left. It can be balance by putting 2 in front of HgS as shown below:
2HgS + 3O2 → 2HgO + 2SO2
Now the equation is balanced.
The coefficients are: 2, 3, 2, 2
The law of conservation of mass(matter) states that matter(mass) can neither be created nor destroyed during a chemical reaction but changes from one form to another. An unbalanced equation suggests that matter has been created or destroyed. While a balanced equation proofs that matter can never be created but changes to different form. This is the more reason we have count the atoms of an element on both side of the equation to see if they are balanced irrespective of the new form they assume in the product