Answer:
Ok:
Explanation:
So, you can use the Henderson-Hasselbalch equation for this:
pH = pKa + log(
) where A- is the conjugate base of the acid. In other words, A- is the deprotonated form and HA is the protonated.
We can solve that
1 = log(
) and so 10 =
or 10HA = A-. For every 1 protonated form of adenosine (HA), there are 10 A-. So, the percent in the protonated form will be 1(1+10) or 1/11 which is close to 9 percent.
Sucrose is a non ionic compound. It does liberates ion when dissolved in water unlike NaCl or other salts which dissolve in water and produce respective cations and anions.
Thus if any amount of sucrose is dissolved in water, it will form non ionic aqueous solution (it will dissolve completely). Thus sucrose solution being non electrolytic will not conduct electricity in aqueous solution.
the bulb will not light up as sucrose will remain in molecular form only
Answer : The number of bonding electrons and the number of non-bonding electrons are (4, 18).
Explanation :
The number of bonding electrons and non-bonding electrons in the structure of
is determined by the Lewis-dot structure.
Lewis-dot structure : It tell us about the number of valence electrons of an atom within a molecule and it is also shows the bonding between the atoms of a molecule and the lone-pair of electrons.
In the given structure, 'Xe' is the central atom and 'F' is the terminal atom.
Xenon has 8 valence electrons and fluorine has 7 valence electrons.
Total number of valence electrons in
= 8 + 2(7) = 22 electrons
From the Lewis-dot structure, we conclude that
The number of electrons used in bonding = 4
The number of electrons used in non-bonding (lone-pairs) = 22 - 4 = 18
Therefore, the number of bonding electrons and the number of non-bonding electrons are (4, 18).
The Lewis-dot structure of
is shown below.
Answer:
Cu(OH)₂ will precipitate first, with [OH⁻] = 2.97x10⁻¹⁰ M
Explanation:
The equilibriums that take place are:
Cu⁺² + 2OH⁻ ↔ Cu(OH)₂(s) ksp = 2.2x10⁻²⁰ = [Cu⁺²]*[OH⁻]²
Co⁺² + 2OH⁻ ↔ Co(OH)₂(s) ksp = 1.3x10⁻¹⁵ = [Co⁺²]*[OH⁻]²
Keep in mind that <em>the concentration of each ion is halved </em>because of the dilution when mixing the solutions.
For Cu⁺²:
2.2x10⁻²⁰ = [Cu⁺²]*[OH⁻]²
2.2x10⁻²⁰ = 0.25 M*[OH⁻]²
[OH⁻] = 2.97x10⁻¹⁰ M
For Co⁺²:
1.3x10⁻¹⁵ = [Co⁺²]*[OH⁻]²
1.3x10⁻¹⁵ = 0.25 M*[OH⁻]²
[OH⁻] = 7.21x10⁻⁸ M
<u>Because Copper requires less concentration of OH⁻ than Cobalt</u>, Cu(OH)₂ will precipitate first, with [OH⁻] = 2.97x10⁻¹⁰ M
Answer:
190 mmHg
Explanation:
According to Dalton's law, in a mixture of ideal gases, each gas behaves independently of the other. Also, the total pressure is equal to the sum of the individual partial pressures.
The total pressure of the mixture is 470 mmHg , and the partial pressure of nitrogen is 280 mmHg. Then,
P = pO₂ + pN₂
pO₂ = P - pN₂
pO₂ = 470 mmHg - 280 mmHg
pO₂ = 190 mmHg