Answer:
The description including its given problem is outlined in the following section on the clarification.
Explanation:
The given values are:
RBCC = 0.12584 nm
RFCC = 0.12894 nm
The unit cell edge length (ABCC) as well as the atomic radius (RBcc) respectively connected as measures for BCC (α-phase) structure:
√3 ABCC = 4RBCC
⇒ ABCC = 
⇒ = 
⇒ = 
Likewise AFCC as well as RFCC are interconnected by
√2AFCC = 4RFCC
⇒ AFCC = 
⇒ = 
⇒ = 
Now,
The Change in Percent Volume,
= 
= 
= 
= 
= 
Note: percent = %
Ideal solutions obey Raoult's law, which states that:
P_i = x_i*(P_pure)_i
where
P_i is the partial pressure of component i above a solution
x_i is the mole fraction of component i in the solution
(P_pure)_i is the vapor pressure of pure component i
In this case,
P_benzene = 0.59 * 745 torr = 439.6 torr
P_toluene = (1-0.59) * 290 torr = 118.9 torr
The total vapor pressure above the solution is the sum of the vapor pressures of the individual components:
P_total = (439.6 + 118.9) torr = 558.5 torr
Assuming the gas phase also behaves ideally, the partial pressure of each gas in the vapor phase is proportional to its molar concentration, so the mole fraction of toluene in the vapor phase is:
118.9 torr/558.5 torr = 0.213
Amines are derivatives of
Ammonia (NH₃) in which atleast one hydrogen atom is replaced by an alkyl group. Amines are further classifies as;
Primary Amines: In primary amines the nitrogen atom is attached to two hydrogen atoms and one alkyl group.
Secondary Amines: In secondary amines the nitrogen atom is attached to two alkyl groups and one hydrogen atom.
Tertiary Amines: In tertiary amines the nitrogen atom is attached to three alkyl groups, hence it has no hydrogen atom.
Below are three isomers of tertiary amines with molecular formula
C₅H₁₃N.
Answer:
64.0
Explanation:
2Mg+O2 ---> 2MgO
use dimentional analysis to find the amount of moles of O2 needed first
4.00molMg x 1.00mol O2/ 2.00 mol Mg=. 2.00 mol O2
using the coefficients you can see the mole ratio for O2:Mg the mole ratio is 1:2 which is why there is 1 mole on the top for 2 moles on the bottom. The Mg would cancel and multiply 4 by 1 then divide by 2, or multipy 4 by 1/2
Now that you have the moles of O2 you use the molar mass to find the grams in 2 moles of O2
2.00 mol O2 x 32.0g/1.00 mol = 64.0 g
multiply 2 by 32
Answer:
Water moves into the cell
Explanation:
As shown in the question above, the cell is high in glucose and placed in a glass filled with water. This cell has a semi permeable membrane that allows only water to pass through, as the concentration of water within the cell is low, the cell will attempt to strike a balance with the medium it is inserted into. For this reason, what is likely to happen is the passage of water from the most concentrated to the least concentrated medium, that is, the water will pass from the cup to the cell.
water moves into the cell through osmosis.during osmosis water moves from a region of low concentration of solute to a region of high concentration of solute.the glucose introduced into the cell makes it more concentrated.
In this case the cell is hypertonic and water would enter into the cell through the semi permeable membrane.this membrane allows water to pass through but not glucose.this movement of water into the cell causes the cell to become turgid.