Answer:
619.2 °C
Explanation:
Given data:
Initial volume of gas = 736 mL
Initial temperature = 15°C
Final volume = 2.28 L
Final temperature = ?
Solution:
First of all we will convert the temperature into kelvin and mL into L.
Initial temperature = 15°C (15+273 = 288 k)
Initial volume of gas = 736 mL × 1 L/1000 mL = 0.736 L
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
0.736 L / 288 k = 2.28 L / T₂
T₂ = 2.28 L× 288 k/0.736 L
T₂ = 656.64 K /0.736
T₂ = 892.2 K
Kelvin to °C:
892.2 K - 273.15 = 619.2 °C
Answer:
Water moves into the cell
Explanation:
As shown in the question above, the cell is high in glucose and placed in a glass filled with water. This cell has a semi permeable membrane that allows only water to pass through, as the concentration of water within the cell is low, the cell will attempt to strike a balance with the medium it is inserted into. For this reason, what is likely to happen is the passage of water from the most concentrated to the least concentrated medium, that is, the water will pass from the cup to the cell.
water moves into the cell through osmosis.during osmosis water moves from a region of low concentration of solute to a region of high concentration of solute.the glucose introduced into the cell makes it more concentrated.
In this case the cell is hypertonic and water would enter into the cell through the semi permeable membrane.this membrane allows water to pass through but not glucose.this movement of water into the cell causes the cell to become turgid.
The age of painting was determined from the decay kinetics of the radioactive Carbon -14 present in the painting sample.
Given that the half life of Carbon-14 is 5730 years.
Radioactive decay reactions follow first order rate kinetics.
Calculating the decay constant from half life:
λ
=
= 
Setting up the radioactive rate equation:

Where 

k = decay constant = 

ln 0.125 = 
-2.079=
t=
= 17185 years
t = 17185 years
Therefore age of the painting based in the radiocarbon -14 dating studies is 17185 years
Answer:
C
green traveled les distance but still ended up in the same location as red
Answer is: glycerol because it is more viscous and has a larger molar mass.
Viscosity depends on intermolecular interactions.
The predominant intermolecular force in water and glycerol is hydrogen bonding.
Hydrogen bond is an electrostatic attraction between two polar groups in which one group has hydrogen atom (H) and another group has highly electronegative atom such as nitrogen (like in this molecule), oxygen (O) or fluorine (F).