Answer:
Oriole should buy the wickets.
Explanation:
The variable cost of producing wickets is $22/unit.
The fixed cost of production is $8/unit.
The total cost of producing wickets is $30/unit.
Saran company offers to sell 4900 units of wickets at $24.
If wickets are purchased it will cost $24/unit.
Since cost is lower when buying, Oriole should buy wickets.
Answer:
The answer is "8.37%".
Explanation:












Equity charges
By DDM.


Debt expenses
Bond1

![Bond \ Price = \sum [ \frac{\text{(Semi Annual Coupon)}}{(1 + \frac{YTM}{2})^k}] + \frac{Par\ value}{(1 + \frac{YTM}{2})^{N \times 2}}](https://tex.z-dn.net/?f=Bond%20%5C%20Price%20%3D%20%5Csum%20%20%5B%20%5Cfrac%7B%5Ctext%7B%28Semi%20Annual%20Coupon%29%7D%7D%7B%281%20%2B%20%5Cfrac%7BYTM%7D%7B2%7D%29%5Ek%7D%5D%20%20%20%20%20%2B%20%20%20%5Cfrac%7BPar%5C%20%20value%7D%7B%281%20%2B%20%5Cfrac%7BYTM%7D%7B2%7D%29%5E%7BN%20%5Ctimes%202%7D%7D)
![k=1\\\\K =20 \times 2\\\\980 = \sum [ \frac {(5.1 \times \frac{1000}{200})}{(1 + \frac{YTM}{200})^k}] + \frac{1000}{(1 + \frac{YTM}{200})}^{20 \times 2}\\\\k=1\\\\\ YTM1 = 5.2628923903\\\\Bond2\\](https://tex.z-dn.net/?f=k%3D1%5C%5C%5C%5CK%20%3D20%20%5Ctimes%202%5C%5C%5C%5C980%20%3D%20%5Csum%20%20%5B%20%5Cfrac%20%7B%285.1%20%5Ctimes%20%5Cfrac%7B1000%7D%7B200%7D%29%7D%7B%281%20%2B%20%5Cfrac%7BYTM%7D%7B200%7D%29%5Ek%7D%5D%20%2B%20%20%20%5Cfrac%7B1000%7D%7B%281%20%2B%20%5Cfrac%7BYTM%7D%7B200%7D%29%7D%5E%7B20%20%5Ctimes%202%7D%5C%5C%5C%5Ck%3D1%5C%5C%5C%5C%5C%20YTM1%20%3D%205.2628923903%5C%5C%5C%5CBond2%5C%5C)

![Bond \ Price = \sum [ \frac{\text{(Semi Annual Coupon)}}{(1 + \frac{YTM}{2})^k}] + \frac{Par\ value}{(1 + \frac{YTM}{2})^{N \times 2}}](https://tex.z-dn.net/?f=Bond%20%5C%20Price%20%3D%20%5Csum%20%20%5B%20%5Cfrac%7B%5Ctext%7B%28Semi%20Annual%20Coupon%29%7D%7D%7B%281%20%2B%20%5Cfrac%7BYTM%7D%7B2%7D%29%5Ek%7D%5D%20%20%20%20%20%2B%20%20%20%5Cfrac%7BPar%5C%20%20value%7D%7B%281%20%2B%20%5Cfrac%7BYTM%7D%7B2%7D%29%5E%7BN%20%5Ctimes%202%7D%7D)

![1080 =\sum [\frac{(5.6 \times \frac{1000}{200})}{(1 + \frac{YTM}{200})^k}] +\frac{1000}{(1 +\frac{YTM}{200})^{12 \times 2}} \\\\k=1\\\\YTM2 = 4.72\\\\](https://tex.z-dn.net/?f=1080%20%3D%5Csum%20%5B%5Cfrac%7B%285.6%20%5Ctimes%20%5Cfrac%7B1000%7D%7B200%7D%29%7D%7B%281%20%2B%20%5Cfrac%7BYTM%7D%7B200%7D%29%5Ek%7D%5D%20%2B%5Cfrac%7B1000%7D%7B%281%20%2B%5Cfrac%7BYTM%7D%7B200%7D%29%5E%7B12%20%5Ctimes%202%7D%7D%20%5C%5C%5C%5Ck%3D1%5C%5C%5C%5CYTM2%20%3D%204.72%5C%5C%5C%5C)

The cost of the debt for the company:

Business debt cost=
after taxation cost of debt:


Answer:
Please find the income statement below;
Explanation:
<u>Single step Income statement</u>
Revenues
Net sales 2,419,200
Interest revenue 39,300
<em>Total revenues 2,458,500</em>
Expenses
Cost of goods sold 1,464,600
Admin. expenses 216,400
Selling expenses 294,800
Interest expense 46,000
<em>Total expenses 2,021,800</em>
<em><u>Net Income </u></em><em> </em><u><em>436,700</em></u>
Answer:
The correct option is b.
Explanation:
Telephone as the fastest approach would be using a telephone. This mode is the fastest mode of communication for Raj to communicate with his team immediately.
Answer:
It will take 51 months.
Explanation:
As we know the constant payment of $290 monthly is the annuity payment to pay $12,000 with interest rate of 0.84% per month. The Number of Months can be calculated by following formula.
Loan amount = PV = $12,000
Rate of interest = r = 0.84 %
Monthly Payment = P = $290
PV of annuity = P x [ ( 1- ( 1+ r )^-n ) / r ]
$12,000 = $290 x [ ( 1 - ( 1 + 0.84% )^-n / 0.84% ]
$12000 x 0.84% / $290 = 1 - ( 1 + 0.84% )^-n
0.347586 = 1 - ( 1 + 0.84% )^-n
0.347586 - 1 = - ( 1 + 0.84% )^-n
-0.652414 = - ( 1 + 0.84% )^-n
1 / 0.652414 = 1.0084^n
1.532769 = 1.0084^n
Log 1.532769 = n x log 1.0084
n = Log 1.532769 / log 1.0084
n = 51